L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 5-s + (−0.499 + 0.866i)6-s + (−1.5 + 2.59i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (1.5 + 2.59i)11-s − 0.999·12-s + (−2.5 − 2.59i)13-s − 3·14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s − 0.447·5-s + (−0.204 + 0.353i)6-s + (−0.566 + 0.981i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (0.452 + 0.783i)11-s − 0.288·12-s + (−0.693 − 0.720i)13-s − 0.801·14-s + (−0.129 − 0.223i)15-s + (−0.125 − 0.216i)16-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.350512 + 1.27536i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.350512 + 1.27536i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + T \) |
| 13 | \( 1 + (2.5 + 2.59i)T \) |
good | 7 | \( 1 + (1.5 - 2.59i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.5 - 2.59i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-2 - 3.46i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6T + 31T^{2} \) |
| 37 | \( 1 + (4.5 + 7.79i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5 - 8.66i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5 + 8.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 3T + 47T^{2} \) |
| 53 | \( 1 - 9T + 53T^{2} \) |
| 59 | \( 1 + (6 - 10.3i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3 + 5.19i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4 - 6.92i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-7 + 12.1i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 8T + 73T^{2} \) |
| 79 | \( 1 - 6T + 79T^{2} \) |
| 83 | \( 1 - 16T + 83T^{2} \) |
| 89 | \( 1 + (-1.5 - 2.59i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4 - 6.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.12184536074245853113234315833, −10.68344576651312832964093446528, −9.646441240947636996199826738004, −8.942884903496133504325607963010, −7.948922916173447685840328622677, −7.01170411604508090564898144515, −5.84610574046295629904311059978, −4.90849425690920176090543987196, −3.76996627205037880294805430924, −2.61475015982717588378116578525,
0.76962871265009272834052813845, 2.60647991919117434963431003928, 3.75353878660199665088185467812, 4.69164564802427884901286656054, 6.35588237001831651787079776003, 7.00562476633892184609951392641, 8.212057093468741345461616144901, 9.182759533230469024555428933063, 10.14896411386427865856542304193, 11.08177851998617961590696196601