Properties

Label 2-390-13.3-c1-0-3
Degree $2$
Conductor $390$
Sign $-0.859 - 0.511i$
Analytic cond. $3.11416$
Root an. cond. $1.76469$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s − 5-s + (−0.499 + 0.866i)6-s + (−1.5 + 2.59i)7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.5 − 0.866i)10-s + (1.5 + 2.59i)11-s − 0.999·12-s + (−2.5 − 2.59i)13-s − 3·14-s + (−0.5 − 0.866i)15-s + (−0.5 − 0.866i)16-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s − 0.447·5-s + (−0.204 + 0.353i)6-s + (−0.566 + 0.981i)7-s − 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.158 − 0.273i)10-s + (0.452 + 0.783i)11-s − 0.288·12-s + (−0.693 − 0.720i)13-s − 0.801·14-s + (−0.129 − 0.223i)15-s + (−0.125 − 0.216i)16-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 390 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.859 - 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(390\)    =    \(2 \cdot 3 \cdot 5 \cdot 13\)
Sign: $-0.859 - 0.511i$
Analytic conductor: \(3.11416\)
Root analytic conductor: \(1.76469\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{390} (211, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 390,\ (\ :1/2),\ -0.859 - 0.511i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.350512 + 1.27536i\)
\(L(\frac12)\) \(\approx\) \(0.350512 + 1.27536i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 - 0.866i)T \)
3 \( 1 + (-0.5 - 0.866i)T \)
5 \( 1 + T \)
13 \( 1 + (2.5 + 2.59i)T \)
good7 \( 1 + (1.5 - 2.59i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (-1.5 - 2.59i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (1.5 - 2.59i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2 - 3.46i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-2 - 3.46i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 6T + 31T^{2} \)
37 \( 1 + (4.5 + 7.79i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-5 - 8.66i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (-5 + 8.66i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + 3T + 47T^{2} \)
53 \( 1 - 9T + 53T^{2} \)
59 \( 1 + (6 - 10.3i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-3 + 5.19i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (-4 - 6.92i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-7 + 12.1i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + 8T + 73T^{2} \)
79 \( 1 - 6T + 79T^{2} \)
83 \( 1 - 16T + 83T^{2} \)
89 \( 1 + (-1.5 - 2.59i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 + (4 - 6.92i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.12184536074245853113234315833, −10.68344576651312832964093446528, −9.646441240947636996199826738004, −8.942884903496133504325607963010, −7.948922916173447685840328622677, −7.01170411604508090564898144515, −5.84610574046295629904311059978, −4.90849425690920176090543987196, −3.76996627205037880294805430924, −2.61475015982717588378116578525, 0.76962871265009272834052813845, 2.60647991919117434963431003928, 3.75353878660199665088185467812, 4.69164564802427884901286656054, 6.35588237001831651787079776003, 7.00562476633892184609951392641, 8.212057093468741345461616144901, 9.182759533230469024555428933063, 10.14896411386427865856542304193, 11.08177851998617961590696196601

Graph of the $Z$-function along the critical line