L(s) = 1 | − i·2-s + 3-s − 4-s + i·5-s − i·6-s + 3.12i·7-s + i·8-s + 9-s + 10-s + 5.12i·11-s − 12-s + (3.56 − 0.561i)13-s + 3.12·14-s + i·15-s + 16-s + 2·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.577·3-s − 0.5·4-s + 0.447i·5-s − 0.408i·6-s + 1.18i·7-s + 0.353i·8-s + 0.333·9-s + 0.316·10-s + 1.54i·11-s − 0.288·12-s + (0.987 − 0.155i)13-s + 0.834·14-s + 0.258i·15-s + 0.250·16-s + 0.485·17-s + ⋯ |
Λ(s)=(=(390s/2ΓC(s)L(s)(0.987−0.155i)Λ(2−s)
Λ(s)=(=(390s/2ΓC(s+1/2)L(s)(0.987−0.155i)Λ(1−s)
Degree: |
2 |
Conductor: |
390
= 2⋅3⋅5⋅13
|
Sign: |
0.987−0.155i
|
Analytic conductor: |
3.11416 |
Root analytic conductor: |
1.76469 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ390(181,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 390, ( :1/2), 0.987−0.155i)
|
Particular Values
L(1) |
≈ |
1.56736+0.122805i |
L(21) |
≈ |
1.56736+0.122805i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1−T |
| 5 | 1−iT |
| 13 | 1+(−3.56+0.561i)T |
good | 7 | 1−3.12iT−7T2 |
| 11 | 1−5.12iT−11T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+6iT−19T2 |
| 23 | 1+5.12T+23T2 |
| 29 | 1−2T+29T2 |
| 31 | 1−3.12iT−31T2 |
| 37 | 1+5.12iT−37T2 |
| 41 | 1−0.876iT−41T2 |
| 43 | 1−6.24T+43T2 |
| 47 | 1+6.24iT−47T2 |
| 53 | 1+13.3T+53T2 |
| 59 | 1+1.12iT−59T2 |
| 61 | 1−10T+61T2 |
| 67 | 1−4.87iT−67T2 |
| 71 | 1−10.2iT−71T2 |
| 73 | 1+13.1iT−73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1+6.24iT−83T2 |
| 89 | 1−3.12iT−89T2 |
| 97 | 1+13.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.38127746873682666631590746499, −10.37101883808793684106382668017, −9.519613973867561841431976654146, −8.812024689168253307926174133572, −7.80969928564689767813418066144, −6.64359584280747701279743440924, −5.36126612194867428113126943173, −4.14944062459346395365861817459, −2.87150561423351129406409523583, −1.94216972204415676821100824926,
1.12154252455089545342960236453, 3.47828406412126673822702117232, 4.17139879793489547440662405322, 5.70088274447625252525906654435, 6.49499788494832839476608606612, 8.022360486362146270906906186783, 8.072100298636340252821930282454, 9.297585462794563626732895733261, 10.24661716179834426251987970577, 11.13981131024825043284159099711