| L(s) = 1 | + (1.5 − 0.866i)7-s + (1 − 1.73i)13-s + (0.5 + 0.866i)25-s + (−1.5 − 0.866i)31-s − 37-s + (−1.5 + 0.866i)43-s + (1 − 1.73i)49-s + (0.5 + 0.866i)61-s + (−1.5 − 0.866i)67-s + 73-s − 3.46i·91-s + (1 + 1.73i)97-s + (1.5 + 0.866i)103-s + 109-s + ⋯ |
| L(s) = 1 | + (1.5 − 0.866i)7-s + (1 − 1.73i)13-s + (0.5 + 0.866i)25-s + (−1.5 − 0.866i)31-s − 37-s + (−1.5 + 0.866i)43-s + (1 − 1.73i)49-s + (0.5 + 0.866i)61-s + (−1.5 − 0.866i)67-s + 73-s − 3.46i·91-s + (1 + 1.73i)97-s + (1.5 + 0.866i)103-s + 109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3888 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.580458663\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.580458663\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| good | 5 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (1.5 - 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T + T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.427173536858445908698911865016, −7.76684442644196227735990709751, −7.38107747237940171675678802994, −6.30420944179418688327969898291, −5.37715938237756924196454367049, −4.94544626569107273554113873968, −3.86810455554872039137197584415, −3.24880599759340016764385707698, −1.86147864468494075556742916431, −0.988164512003564007448958561414,
1.61343077709323413481975628117, 2.01231938625483712705564140244, 3.36921839121528907370734445260, 4.31883101176652438406258348613, 4.97844677055115349935867514711, 5.70169147781663000905255178721, 6.60131126873744608595057320890, 7.23949741095437286098092413238, 8.279573307832041009155757588814, 8.728803438317711565630801184048