L(s) = 1 | + 3.46·5-s + 7-s + 3.46·11-s + 5·13-s + 19-s + 6.92·23-s + 6.99·25-s − 3.46·29-s − 5·31-s + 3.46·35-s − 37-s + 3.46·41-s + 43-s + 3.46·47-s − 6·49-s − 10.3·53-s + 11.9·55-s − 3.46·59-s + 2·61-s + 17.3·65-s − 8·67-s − 10.3·71-s + 2·73-s + 3.46·77-s + 79-s − 6.92·83-s + 10.3·89-s + ⋯ |
L(s) = 1 | + 1.54·5-s + 0.377·7-s + 1.04·11-s + 1.38·13-s + 0.229·19-s + 1.44·23-s + 1.39·25-s − 0.643·29-s − 0.898·31-s + 0.585·35-s − 0.164·37-s + 0.541·41-s + 0.152·43-s + 0.505·47-s − 0.857·49-s − 1.42·53-s + 1.61·55-s − 0.450·59-s + 0.256·61-s + 2.14·65-s − 0.977·67-s − 1.23·71-s + 0.234·73-s + 0.394·77-s + 0.112·79-s − 0.760·83-s + 1.10·89-s + ⋯ |
Λ(s)=(=(3888s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3888s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.302387758 |
L(21) |
≈ |
3.302387758 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−3.46T+5T2 |
| 7 | 1−T+7T2 |
| 11 | 1−3.46T+11T2 |
| 13 | 1−5T+13T2 |
| 17 | 1+17T2 |
| 19 | 1−T+19T2 |
| 23 | 1−6.92T+23T2 |
| 29 | 1+3.46T+29T2 |
| 31 | 1+5T+31T2 |
| 37 | 1+T+37T2 |
| 41 | 1−3.46T+41T2 |
| 43 | 1−T+43T2 |
| 47 | 1−3.46T+47T2 |
| 53 | 1+10.3T+53T2 |
| 59 | 1+3.46T+59T2 |
| 61 | 1−2T+61T2 |
| 67 | 1+8T+67T2 |
| 71 | 1+10.3T+71T2 |
| 73 | 1−2T+73T2 |
| 79 | 1−T+79T2 |
| 83 | 1+6.92T+83T2 |
| 89 | 1−10.3T+89T2 |
| 97 | 1−17T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.823148884472770583686001033090, −7.72253562023634107256833095808, −6.81574589779543637368539971185, −6.19601898208036417515526512565, −5.63429678017844926628142228106, −4.83706904053187060669113718097, −3.81573367725641187139774016798, −2.92573440025065869437037121154, −1.72304635608116323224123903823, −1.23579631315049212244451551519,
1.23579631315049212244451551519, 1.72304635608116323224123903823, 2.92573440025065869437037121154, 3.81573367725641187139774016798, 4.83706904053187060669113718097, 5.63429678017844926628142228106, 6.19601898208036417515526512565, 6.81574589779543637368539971185, 7.72253562023634107256833095808, 8.823148884472770583686001033090