L(s) = 1 | + 3·3-s + 5-s + 6·9-s + 6·13-s + 3·15-s + 4·17-s − 6·19-s + 3·23-s − 4·25-s + 9·27-s + 4·29-s − 9·31-s + 7·37-s + 18·39-s + 2·41-s − 6·43-s + 6·45-s + 12·47-s − 7·49-s + 12·51-s + 2·53-s − 18·57-s + 9·59-s − 8·61-s + 6·65-s − 15·67-s + 9·69-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.447·5-s + 2·9-s + 1.66·13-s + 0.774·15-s + 0.970·17-s − 1.37·19-s + 0.625·23-s − 4/5·25-s + 1.73·27-s + 0.742·29-s − 1.61·31-s + 1.15·37-s + 2.88·39-s + 0.312·41-s − 0.914·43-s + 0.894·45-s + 1.75·47-s − 49-s + 1.68·51-s + 0.274·53-s − 2.38·57-s + 1.17·59-s − 1.02·61-s + 0.744·65-s − 1.83·67-s + 1.08·69-s + ⋯ |
Λ(s)=(=(3872s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3872s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.456646077 |
L(21) |
≈ |
4.456646077 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 11 | 1 |
good | 3 | 1−pT+pT2 |
| 5 | 1−T+pT2 |
| 7 | 1+pT2 |
| 13 | 1−6T+pT2 |
| 17 | 1−4T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1−3T+pT2 |
| 29 | 1−4T+pT2 |
| 31 | 1+9T+pT2 |
| 37 | 1−7T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+6T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1−9T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1+15T+pT2 |
| 71 | 1+3T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1−6T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+5T+pT2 |
| 97 | 1+3T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.463805274480032902771890485211, −8.006102220895286729861212502768, −7.20716272694663712940001591257, −6.32385710458151688343766354254, −5.60610239516517308689450757263, −4.32368875597613387288473485169, −3.72477499010942593504003294230, −2.99122228122758599463705875125, −2.07332820410151415501700977303, −1.27300481642330281094266289768,
1.27300481642330281094266289768, 2.07332820410151415501700977303, 2.99122228122758599463705875125, 3.72477499010942593504003294230, 4.32368875597613387288473485169, 5.60610239516517308689450757263, 6.32385710458151688343766354254, 7.20716272694663712940001591257, 8.006102220895286729861212502768, 8.463805274480032902771890485211