L(s) = 1 | − 3i·3-s + 8i·5-s − 12·7-s − 9·9-s − 12i·11-s + 20i·13-s + 24·15-s + 62·17-s − 108i·19-s + 36i·21-s + 72·23-s + 61·25-s + 27i·27-s − 128i·29-s + 204·31-s + ⋯ |
L(s) = 1 | − 0.577i·3-s + 0.715i·5-s − 0.647·7-s − 0.333·9-s − 0.328i·11-s + 0.426i·13-s + 0.413·15-s + 0.884·17-s − 1.30i·19-s + 0.374i·21-s + 0.652·23-s + 0.487·25-s + 0.192i·27-s − 0.819i·29-s + 1.18·31-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.707+0.707i)Λ(4−s)
Λ(s)=(=(384s/2ΓC(s+3/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
22.6567 |
Root analytic conductor: |
4.75990 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :3/2), 0.707+0.707i)
|
Particular Values
L(2) |
≈ |
1.662048924 |
L(21) |
≈ |
1.662048924 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+3iT |
good | 5 | 1−8iT−125T2 |
| 7 | 1+12T+343T2 |
| 11 | 1+12iT−1.33e3T2 |
| 13 | 1−20iT−2.19e3T2 |
| 17 | 1−62T+4.91e3T2 |
| 19 | 1+108iT−6.85e3T2 |
| 23 | 1−72T+1.21e4T2 |
| 29 | 1+128iT−2.43e4T2 |
| 31 | 1−204T+2.97e4T2 |
| 37 | 1−228iT−5.06e4T2 |
| 41 | 1+22T+6.89e4T2 |
| 43 | 1+204iT−7.95e4T2 |
| 47 | 1−600T+1.03e5T2 |
| 53 | 1+256iT−1.48e5T2 |
| 59 | 1+828iT−2.05e5T2 |
| 61 | 1+84iT−2.26e5T2 |
| 67 | 1+348iT−3.00e5T2 |
| 71 | 1+456T+3.57e5T2 |
| 73 | 1−822T+3.89e5T2 |
| 79 | 1−1.35e3T+4.93e5T2 |
| 83 | 1+108iT−5.71e5T2 |
| 89 | 1+938T+7.04e5T2 |
| 97 | 1−1.27e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.88758045829862777463725896634, −9.908757253579809690057150085985, −8.970381761779671909165505777745, −7.88366026597079824288528619576, −6.84660943388273585944637826379, −6.33506803100283482008421661977, −4.99321205682029885702958347931, −3.41710824678293383153661424220, −2.50033972193491986500237740914, −0.72028353492479047861093909844,
1.04797873822628727908765330350, 2.92198359829609070233142221255, 4.04303773165259767684355044715, 5.16738416771866755775375752886, 6.03029862734700909799207496381, 7.36200899198744230967914767662, 8.405451713842020603646094967365, 9.278962047227124056166872836397, 10.07581722560803102455752514939, 10.80794673550282631160108035630