Properties

Label 2-384-8.5-c3-0-13
Degree $2$
Conductor $384$
Sign $0.707 + 0.707i$
Analytic cond. $22.6567$
Root an. cond. $4.75990$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3i·3-s + 8i·5-s − 12·7-s − 9·9-s − 12i·11-s + 20i·13-s + 24·15-s + 62·17-s − 108i·19-s + 36i·21-s + 72·23-s + 61·25-s + 27i·27-s − 128i·29-s + 204·31-s + ⋯
L(s)  = 1  − 0.577i·3-s + 0.715i·5-s − 0.647·7-s − 0.333·9-s − 0.328i·11-s + 0.426i·13-s + 0.413·15-s + 0.884·17-s − 1.30i·19-s + 0.374i·21-s + 0.652·23-s + 0.487·25-s + 0.192i·27-s − 0.819i·29-s + 1.18·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $0.707 + 0.707i$
Analytic conductor: \(22.6567\)
Root analytic conductor: \(4.75990\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :3/2),\ 0.707 + 0.707i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.662048924\)
\(L(\frac12)\) \(\approx\) \(1.662048924\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + 3iT \)
good5 \( 1 - 8iT - 125T^{2} \)
7 \( 1 + 12T + 343T^{2} \)
11 \( 1 + 12iT - 1.33e3T^{2} \)
13 \( 1 - 20iT - 2.19e3T^{2} \)
17 \( 1 - 62T + 4.91e3T^{2} \)
19 \( 1 + 108iT - 6.85e3T^{2} \)
23 \( 1 - 72T + 1.21e4T^{2} \)
29 \( 1 + 128iT - 2.43e4T^{2} \)
31 \( 1 - 204T + 2.97e4T^{2} \)
37 \( 1 - 228iT - 5.06e4T^{2} \)
41 \( 1 + 22T + 6.89e4T^{2} \)
43 \( 1 + 204iT - 7.95e4T^{2} \)
47 \( 1 - 600T + 1.03e5T^{2} \)
53 \( 1 + 256iT - 1.48e5T^{2} \)
59 \( 1 + 828iT - 2.05e5T^{2} \)
61 \( 1 + 84iT - 2.26e5T^{2} \)
67 \( 1 + 348iT - 3.00e5T^{2} \)
71 \( 1 + 456T + 3.57e5T^{2} \)
73 \( 1 - 822T + 3.89e5T^{2} \)
79 \( 1 - 1.35e3T + 4.93e5T^{2} \)
83 \( 1 + 108iT - 5.71e5T^{2} \)
89 \( 1 + 938T + 7.04e5T^{2} \)
97 \( 1 - 1.27e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.88758045829862777463725896634, −9.908757253579809690057150085985, −8.970381761779671909165505777745, −7.88366026597079824288528619576, −6.84660943388273585944637826379, −6.33506803100283482008421661977, −4.99321205682029885702958347931, −3.41710824678293383153661424220, −2.50033972193491986500237740914, −0.72028353492479047861093909844, 1.04797873822628727908765330350, 2.92198359829609070233142221255, 4.04303773165259767684355044715, 5.16738416771866755775375752886, 6.03029862734700909799207496381, 7.36200899198744230967914767662, 8.405451713842020603646094967365, 9.278962047227124056166872836397, 10.07581722560803102455752514939, 10.80794673550282631160108035630

Graph of the $Z$-function along the critical line