L(s) = 1 | + i·3-s − 4·7-s − 9-s + 4i·11-s + 4i·13-s − 2·17-s + 4i·19-s − 4i·21-s − 8·23-s + 5·25-s − i·27-s − 8i·29-s + 4·31-s − 4·33-s + 4i·37-s + ⋯ |
L(s) = 1 | + 0.577i·3-s − 1.51·7-s − 0.333·9-s + 1.20i·11-s + 1.10i·13-s − 0.485·17-s + 0.917i·19-s − 0.872i·21-s − 1.66·23-s + 25-s − 0.192i·27-s − 1.48i·29-s + 0.718·31-s − 0.696·33-s + 0.657i·37-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(−0.707−0.707i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(−0.707−0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
−0.707−0.707i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(193,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), −0.707−0.707i)
|
Particular Values
L(1) |
≈ |
0.293958+0.709678i |
L(21) |
≈ |
0.293958+0.709678i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−iT |
good | 5 | 1−5T2 |
| 7 | 1+4T+7T2 |
| 11 | 1−4iT−11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1+2T+17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1+8T+23T2 |
| 29 | 1+8iT−29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−4iT−37T2 |
| 41 | 1+6T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−8T+47T2 |
| 53 | 1−8iT−53T2 |
| 59 | 1+12iT−59T2 |
| 61 | 1−12iT−61T2 |
| 67 | 1+12iT−67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1−4iT−83T2 |
| 89 | 1−6T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87155743444823576618691414129, −10.47480634983299212945983286650, −9.795043619028065311157014176521, −9.289120191022971870579262648242, −8.022973344092631875977933620594, −6.74300109421012252853259468529, −6.12222230875314374987170042074, −4.58660694737531538003861714253, −3.75572216193165549442230518239, −2.30795357271118856102465366246,
0.48679498189518907930183266173, 2.70932525750295076442157014770, 3.59263299891930224026818578911, 5.39213430206201839831945637149, 6.30498517475523438238710455379, 7.04387989340392764368635757257, 8.303111151110790689211383562790, 9.031461175966213677931290791137, 10.18122931162721848567067732934, 10.91923308779591399917835911238