Properties

Label 2-384-8.5-c1-0-0
Degree $2$
Conductor $384$
Sign $-0.707 - 0.707i$
Analytic cond. $3.06625$
Root an. cond. $1.75107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·3-s − 4·7-s − 9-s + 4i·11-s + 4i·13-s − 2·17-s + 4i·19-s − 4i·21-s − 8·23-s + 5·25-s i·27-s − 8i·29-s + 4·31-s − 4·33-s + 4i·37-s + ⋯
L(s)  = 1  + 0.577i·3-s − 1.51·7-s − 0.333·9-s + 1.20i·11-s + 1.10i·13-s − 0.485·17-s + 0.917i·19-s − 0.872i·21-s − 1.66·23-s + 25-s − 0.192i·27-s − 1.48i·29-s + 0.718·31-s − 0.696·33-s + 0.657i·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.707 - 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $-0.707 - 0.707i$
Analytic conductor: \(3.06625\)
Root analytic conductor: \(1.75107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (193, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1/2),\ -0.707 - 0.707i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.293958 + 0.709678i\)
\(L(\frac12)\) \(\approx\) \(0.293958 + 0.709678i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - iT \)
good5 \( 1 - 5T^{2} \)
7 \( 1 + 4T + 7T^{2} \)
11 \( 1 - 4iT - 11T^{2} \)
13 \( 1 - 4iT - 13T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 4iT - 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 + 8iT - 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 4iT - 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 4iT - 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 8iT - 53T^{2} \)
59 \( 1 + 12iT - 59T^{2} \)
61 \( 1 - 12iT - 61T^{2} \)
67 \( 1 + 12iT - 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 - 4iT - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.87155743444823576618691414129, −10.47480634983299212945983286650, −9.795043619028065311157014176521, −9.289120191022971870579262648242, −8.022973344092631875977933620594, −6.74300109421012252853259468529, −6.12222230875314374987170042074, −4.58660694737531538003861714253, −3.75572216193165549442230518239, −2.30795357271118856102465366246, 0.48679498189518907930183266173, 2.70932525750295076442157014770, 3.59263299891930224026818578911, 5.39213430206201839831945637149, 6.30498517475523438238710455379, 7.04387989340392764368635757257, 8.303111151110790689211383562790, 9.031461175966213677931290791137, 10.18122931162721848567067732934, 10.91923308779591399917835911238

Graph of the $Z$-function along the critical line