L(s) = 1 | + (−0.707 − 0.707i)3-s + (−1.27 + 1.27i)5-s + 0.158i·7-s + 1.00i·9-s + (3.79 − 3.79i)11-s + (4.21 + 4.21i)13-s + 1.79·15-s + 3.05·17-s + (2.15 + 2.15i)19-s + (0.112 − 0.112i)21-s − 2.82i·23-s + 1.76i·25-s + (0.707 − 0.707i)27-s + (−2.09 − 2.09i)29-s + 4.15·31-s + ⋯ |
L(s) = 1 | + (−0.408 − 0.408i)3-s + (−0.568 + 0.568i)5-s + 0.0600i·7-s + 0.333i·9-s + (1.14 − 1.14i)11-s + (1.16 + 1.16i)13-s + 0.464·15-s + 0.740·17-s + (0.495 + 0.495i)19-s + (0.0245 − 0.0245i)21-s − 0.589i·23-s + 0.353i·25-s + (0.136 − 0.136i)27-s + (−0.389 − 0.389i)29-s + 0.746·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 - 0.0734i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.997 - 0.0734i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19901 + 0.0440762i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19901 + 0.0440762i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.707 + 0.707i)T \) |
good | 5 | \( 1 + (1.27 - 1.27i)T - 5iT^{2} \) |
| 7 | \( 1 - 0.158iT - 7T^{2} \) |
| 11 | \( 1 + (-3.79 + 3.79i)T - 11iT^{2} \) |
| 13 | \( 1 + (-4.21 - 4.21i)T + 13iT^{2} \) |
| 17 | \( 1 - 3.05T + 17T^{2} \) |
| 19 | \( 1 + (-2.15 - 2.15i)T + 19iT^{2} \) |
| 23 | \( 1 + 2.82iT - 23T^{2} \) |
| 29 | \( 1 + (2.09 + 2.09i)T + 29iT^{2} \) |
| 31 | \( 1 - 4.15T + 31T^{2} \) |
| 37 | \( 1 + (-5.98 + 5.98i)T - 37iT^{2} \) |
| 41 | \( 1 - 2.60iT - 41T^{2} \) |
| 43 | \( 1 + (5.75 - 5.75i)T - 43iT^{2} \) |
| 47 | \( 1 + 2.82T + 47T^{2} \) |
| 53 | \( 1 + (3.55 - 3.55i)T - 53iT^{2} \) |
| 59 | \( 1 + (4 - 4i)T - 59iT^{2} \) |
| 61 | \( 1 + (3.66 + 3.66i)T + 61iT^{2} \) |
| 67 | \( 1 + (0.767 + 0.767i)T + 67iT^{2} \) |
| 71 | \( 1 + 0.317iT - 71T^{2} \) |
| 73 | \( 1 - 1.33iT - 73T^{2} \) |
| 79 | \( 1 + 9.69T + 79T^{2} \) |
| 83 | \( 1 + (0.115 + 0.115i)T + 83iT^{2} \) |
| 89 | \( 1 + 14.3iT - 89T^{2} \) |
| 97 | \( 1 + 0.571T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.52280469931592856654072360643, −10.76045541694562703483407656293, −9.453022332278949218479344460163, −8.517746801576729049849468914927, −7.54490120814462986085648514933, −6.45980578933270920062565077221, −5.91079996473555479231026452536, −4.20965764239114577503413450834, −3.25959903538321491543264066094, −1.29448788262382590148833226916,
1.13638174546973384585626250038, 3.39846258282795762731619665786, 4.37057186045183257531550490965, 5.38959363307017260177586280217, 6.51364601283883011684512838152, 7.65233355533570075360143246824, 8.601410138278508604608802376063, 9.578645898195727476419710260061, 10.37510129497643654720491448257, 11.48258966907837180170483891758