L(s) = 1 | + (0.208 − 1.39i)2-s + (0.881 + 0.471i)3-s + (−1.91 − 0.583i)4-s + (1.48 − 1.81i)5-s + (0.843 − 1.13i)6-s + (2.68 + 1.79i)7-s + (−1.21 + 2.55i)8-s + (0.555 + 0.831i)9-s + (−2.22 − 2.46i)10-s + (−0.671 − 0.203i)11-s + (−1.41 − 1.41i)12-s + (4.24 − 3.48i)13-s + (3.06 − 3.37i)14-s + (2.16 − 0.897i)15-s + (3.31 + 2.23i)16-s + (−4.31 − 1.78i)17-s + ⋯ |
L(s) = 1 | + (0.147 − 0.989i)2-s + (0.509 + 0.272i)3-s + (−0.956 − 0.291i)4-s + (0.665 − 0.810i)5-s + (0.344 − 0.463i)6-s + (1.01 + 0.677i)7-s + (−0.429 + 0.902i)8-s + (0.185 + 0.277i)9-s + (−0.703 − 0.777i)10-s + (−0.202 − 0.0613i)11-s + (−0.407 − 0.408i)12-s + (1.17 − 0.966i)13-s + (0.819 − 0.902i)14-s + (0.559 − 0.231i)15-s + (0.829 + 0.558i)16-s + (−1.04 − 0.433i)17-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.189+0.981i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(0.189+0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.189+0.981i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), 0.189+0.981i)
|
Particular Values
L(1) |
≈ |
1.43767−1.18691i |
L(21) |
≈ |
1.43767−1.18691i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.208+1.39i)T |
| 3 | 1+(−0.881−0.471i)T |
good | 5 | 1+(−1.48+1.81i)T+(−0.975−4.90i)T2 |
| 7 | 1+(−2.68−1.79i)T+(2.67+6.46i)T2 |
| 11 | 1+(0.671+0.203i)T+(9.14+6.11i)T2 |
| 13 | 1+(−4.24+3.48i)T+(2.53−12.7i)T2 |
| 17 | 1+(4.31+1.78i)T+(12.0+12.0i)T2 |
| 19 | 1+(0.0391−0.397i)T+(−18.6−3.70i)T2 |
| 23 | 1+(2.48+0.493i)T+(21.2+8.80i)T2 |
| 29 | 1+(0.449+1.48i)T+(−24.1+16.1i)T2 |
| 31 | 1+(3.23−3.23i)T−31iT2 |
| 37 | 1+(6.20−0.610i)T+(36.2−7.21i)T2 |
| 41 | 1+(−1.22+6.16i)T+(−37.8−15.6i)T2 |
| 43 | 1+(−10.2+5.46i)T+(23.8−35.7i)T2 |
| 47 | 1+(3.46−8.36i)T+(−33.2−33.2i)T2 |
| 53 | 1+(2.45−8.09i)T+(−44.0−29.4i)T2 |
| 59 | 1+(−2.49−2.04i)T+(11.5+57.8i)T2 |
| 61 | 1+(5.58−10.4i)T+(−33.8−50.7i)T2 |
| 67 | 1+(6.84−12.8i)T+(−37.2−55.7i)T2 |
| 71 | 1+(−7.22+10.8i)T+(−27.1−65.5i)T2 |
| 73 | 1+(4.10−2.74i)T+(27.9−67.4i)T2 |
| 79 | 1+(−3.49−8.42i)T+(−55.8+55.8i)T2 |
| 83 | 1+(−2.18−0.215i)T+(81.4+16.1i)T2 |
| 89 | 1+(0.00810−0.00161i)T+(82.2−34.0i)T2 |
| 97 | 1+(−2.67+2.67i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.00023672527215181418323612398, −10.41868349752258103226732388701, −9.009381781812360122700672740994, −8.905029663690181280872102223498, −7.88549259299796070871337832306, −5.79128718695626271893366889980, −5.13445313434952978737350299041, −4.04527997053083765582383986303, −2.59424953665795233192429836215, −1.46348744475586084042342821716,
1.86592134860658508485805416463, 3.66610014389958856177648580508, 4.66474861560179859820704936458, 6.12671623983782729093842523636, 6.75912331925927530997555317835, 7.73711492255292472208412177207, 8.558514305712053142842933187298, 9.456569355153846198333776309828, 10.59775278101764319642885406258, 11.38424495416166485934362490744