L(s) = 1 | + (0.208 − 1.39i)2-s + (0.881 + 0.471i)3-s + (−1.91 − 0.583i)4-s + (1.48 − 1.81i)5-s + (0.843 − 1.13i)6-s + (2.68 + 1.79i)7-s + (−1.21 + 2.55i)8-s + (0.555 + 0.831i)9-s + (−2.22 − 2.46i)10-s + (−0.671 − 0.203i)11-s + (−1.41 − 1.41i)12-s + (4.24 − 3.48i)13-s + (3.06 − 3.37i)14-s + (2.16 − 0.897i)15-s + (3.31 + 2.23i)16-s + (−4.31 − 1.78i)17-s + ⋯ |
L(s) = 1 | + (0.147 − 0.989i)2-s + (0.509 + 0.272i)3-s + (−0.956 − 0.291i)4-s + (0.665 − 0.810i)5-s + (0.344 − 0.463i)6-s + (1.01 + 0.677i)7-s + (−0.429 + 0.902i)8-s + (0.185 + 0.277i)9-s + (−0.703 − 0.777i)10-s + (−0.202 − 0.0613i)11-s + (−0.407 − 0.408i)12-s + (1.17 − 0.966i)13-s + (0.819 − 0.902i)14-s + (0.559 − 0.231i)15-s + (0.829 + 0.558i)16-s + (−1.04 − 0.433i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.189 + 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.189 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.43767 - 1.18691i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.43767 - 1.18691i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.208 + 1.39i)T \) |
| 3 | \( 1 + (-0.881 - 0.471i)T \) |
good | 5 | \( 1 + (-1.48 + 1.81i)T + (-0.975 - 4.90i)T^{2} \) |
| 7 | \( 1 + (-2.68 - 1.79i)T + (2.67 + 6.46i)T^{2} \) |
| 11 | \( 1 + (0.671 + 0.203i)T + (9.14 + 6.11i)T^{2} \) |
| 13 | \( 1 + (-4.24 + 3.48i)T + (2.53 - 12.7i)T^{2} \) |
| 17 | \( 1 + (4.31 + 1.78i)T + (12.0 + 12.0i)T^{2} \) |
| 19 | \( 1 + (0.0391 - 0.397i)T + (-18.6 - 3.70i)T^{2} \) |
| 23 | \( 1 + (2.48 + 0.493i)T + (21.2 + 8.80i)T^{2} \) |
| 29 | \( 1 + (0.449 + 1.48i)T + (-24.1 + 16.1i)T^{2} \) |
| 31 | \( 1 + (3.23 - 3.23i)T - 31iT^{2} \) |
| 37 | \( 1 + (6.20 - 0.610i)T + (36.2 - 7.21i)T^{2} \) |
| 41 | \( 1 + (-1.22 + 6.16i)T + (-37.8 - 15.6i)T^{2} \) |
| 43 | \( 1 + (-10.2 + 5.46i)T + (23.8 - 35.7i)T^{2} \) |
| 47 | \( 1 + (3.46 - 8.36i)T + (-33.2 - 33.2i)T^{2} \) |
| 53 | \( 1 + (2.45 - 8.09i)T + (-44.0 - 29.4i)T^{2} \) |
| 59 | \( 1 + (-2.49 - 2.04i)T + (11.5 + 57.8i)T^{2} \) |
| 61 | \( 1 + (5.58 - 10.4i)T + (-33.8 - 50.7i)T^{2} \) |
| 67 | \( 1 + (6.84 - 12.8i)T + (-37.2 - 55.7i)T^{2} \) |
| 71 | \( 1 + (-7.22 + 10.8i)T + (-27.1 - 65.5i)T^{2} \) |
| 73 | \( 1 + (4.10 - 2.74i)T + (27.9 - 67.4i)T^{2} \) |
| 79 | \( 1 + (-3.49 - 8.42i)T + (-55.8 + 55.8i)T^{2} \) |
| 83 | \( 1 + (-2.18 - 0.215i)T + (81.4 + 16.1i)T^{2} \) |
| 89 | \( 1 + (0.00810 - 0.00161i)T + (82.2 - 34.0i)T^{2} \) |
| 97 | \( 1 + (-2.67 + 2.67i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00023672527215181418323612398, −10.41868349752258103226732388701, −9.009381781812360122700672740994, −8.905029663690181280872102223498, −7.88549259299796070871337832306, −5.79128718695626271893366889980, −5.13445313434952978737350299041, −4.04527997053083765582383986303, −2.59424953665795233192429836215, −1.46348744475586084042342821716,
1.86592134860658508485805416463, 3.66610014389958856177648580508, 4.66474861560179859820704936458, 6.12671623983782729093842523636, 6.75912331925927530997555317835, 7.73711492255292472208412177207, 8.558514305712053142842933187298, 9.456569355153846198333776309828, 10.59775278101764319642885406258, 11.38424495416166485934362490744