Properties

Label 2-384-128.109-c1-0-14
Degree $2$
Conductor $384$
Sign $-0.338 - 0.940i$
Analytic cond. $3.06625$
Root an. cond. $1.75107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.986 + 1.01i)2-s + (0.881 + 0.471i)3-s + (−0.0550 + 1.99i)4-s + (−0.677 + 0.825i)5-s + (0.391 + 1.35i)6-s + (1.41 + 0.942i)7-s + (−2.08 + 1.91i)8-s + (0.555 + 0.831i)9-s + (−1.50 + 0.127i)10-s + (−1.74 − 0.528i)11-s + (−0.991 + 1.73i)12-s + (2.10 − 1.72i)13-s + (0.435 + 2.35i)14-s + (−0.987 + 0.408i)15-s + (−3.99 − 0.220i)16-s + (−1.28 − 0.531i)17-s + ⋯
L(s)  = 1  + (0.697 + 0.716i)2-s + (0.509 + 0.272i)3-s + (−0.0275 + 0.999i)4-s + (−0.303 + 0.369i)5-s + (0.159 + 0.554i)6-s + (0.532 + 0.356i)7-s + (−0.735 + 0.677i)8-s + (0.185 + 0.277i)9-s + (−0.476 + 0.0402i)10-s + (−0.525 − 0.159i)11-s + (−0.286 + 0.501i)12-s + (0.582 − 0.478i)13-s + (0.116 + 0.630i)14-s + (−0.254 + 0.105i)15-s + (−0.998 − 0.0550i)16-s + (−0.311 − 0.128i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.338 - 0.940i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.338 - 0.940i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(384\)    =    \(2^{7} \cdot 3\)
Sign: $-0.338 - 0.940i$
Analytic conductor: \(3.06625\)
Root analytic conductor: \(1.75107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{384} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 384,\ (\ :1/2),\ -0.338 - 0.940i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.24500 + 1.77110i\)
\(L(\frac12)\) \(\approx\) \(1.24500 + 1.77110i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.986 - 1.01i)T \)
3 \( 1 + (-0.881 - 0.471i)T \)
good5 \( 1 + (0.677 - 0.825i)T + (-0.975 - 4.90i)T^{2} \)
7 \( 1 + (-1.41 - 0.942i)T + (2.67 + 6.46i)T^{2} \)
11 \( 1 + (1.74 + 0.528i)T + (9.14 + 6.11i)T^{2} \)
13 \( 1 + (-2.10 + 1.72i)T + (2.53 - 12.7i)T^{2} \)
17 \( 1 + (1.28 + 0.531i)T + (12.0 + 12.0i)T^{2} \)
19 \( 1 + (-0.136 + 1.38i)T + (-18.6 - 3.70i)T^{2} \)
23 \( 1 + (-3.76 - 0.749i)T + (21.2 + 8.80i)T^{2} \)
29 \( 1 + (1.26 + 4.16i)T + (-24.1 + 16.1i)T^{2} \)
31 \( 1 + (-0.429 + 0.429i)T - 31iT^{2} \)
37 \( 1 + (-9.15 + 0.902i)T + (36.2 - 7.21i)T^{2} \)
41 \( 1 + (-0.0409 + 0.205i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (-0.656 + 0.350i)T + (23.8 - 35.7i)T^{2} \)
47 \( 1 + (1.66 - 4.01i)T + (-33.2 - 33.2i)T^{2} \)
53 \( 1 + (-2.99 + 9.86i)T + (-44.0 - 29.4i)T^{2} \)
59 \( 1 + (1.91 + 1.57i)T + (11.5 + 57.8i)T^{2} \)
61 \( 1 + (-6.69 + 12.5i)T + (-33.8 - 50.7i)T^{2} \)
67 \( 1 + (5.87 - 10.9i)T + (-37.2 - 55.7i)T^{2} \)
71 \( 1 + (1.22 - 1.83i)T + (-27.1 - 65.5i)T^{2} \)
73 \( 1 + (-4.58 + 3.06i)T + (27.9 - 67.4i)T^{2} \)
79 \( 1 + (-2.27 - 5.49i)T + (-55.8 + 55.8i)T^{2} \)
83 \( 1 + (7.02 + 0.691i)T + (81.4 + 16.1i)T^{2} \)
89 \( 1 + (14.5 - 2.89i)T + (82.2 - 34.0i)T^{2} \)
97 \( 1 + (-7.28 + 7.28i)T - 97iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.48957226474368456594356960873, −11.04476330351685157171844998532, −9.585608222422790701792064957093, −8.526341491186007356861932140910, −7.896576152031804732350559159583, −6.95242469739416326902466659184, −5.72774436141476622855915888569, −4.79626196138047377357566560957, −3.61900774918983177860402969574, −2.58031704336840290658352333519, 1.28450904500149154822904803008, 2.69073783774904859692863747365, 4.01908839830142223610661758730, 4.82020850013376936145445942416, 6.12279593196783262957449467140, 7.28596403164716075860441585977, 8.405604168614777756615093075802, 9.255350084311444488115264290387, 10.40786226298361561353566098163, 11.13850017092324574044274160445

Graph of the $Z$-function along the critical line