L(s) = 1 | + (0.986 + 1.01i)2-s + (0.881 + 0.471i)3-s + (−0.0550 + 1.99i)4-s + (−0.677 + 0.825i)5-s + (0.391 + 1.35i)6-s + (1.41 + 0.942i)7-s + (−2.08 + 1.91i)8-s + (0.555 + 0.831i)9-s + (−1.50 + 0.127i)10-s + (−1.74 − 0.528i)11-s + (−0.991 + 1.73i)12-s + (2.10 − 1.72i)13-s + (0.435 + 2.35i)14-s + (−0.987 + 0.408i)15-s + (−3.99 − 0.220i)16-s + (−1.28 − 0.531i)17-s + ⋯ |
L(s) = 1 | + (0.697 + 0.716i)2-s + (0.509 + 0.272i)3-s + (−0.0275 + 0.999i)4-s + (−0.303 + 0.369i)5-s + (0.159 + 0.554i)6-s + (0.532 + 0.356i)7-s + (−0.735 + 0.677i)8-s + (0.185 + 0.277i)9-s + (−0.476 + 0.0402i)10-s + (−0.525 − 0.159i)11-s + (−0.286 + 0.501i)12-s + (0.582 − 0.478i)13-s + (0.116 + 0.630i)14-s + (−0.254 + 0.105i)15-s + (−0.998 − 0.0550i)16-s + (−0.311 − 0.128i)17-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(−0.338−0.940i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(−0.338−0.940i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
−0.338−0.940i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), −0.338−0.940i)
|
Particular Values
L(1) |
≈ |
1.24500+1.77110i |
L(21) |
≈ |
1.24500+1.77110i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.986−1.01i)T |
| 3 | 1+(−0.881−0.471i)T |
good | 5 | 1+(0.677−0.825i)T+(−0.975−4.90i)T2 |
| 7 | 1+(−1.41−0.942i)T+(2.67+6.46i)T2 |
| 11 | 1+(1.74+0.528i)T+(9.14+6.11i)T2 |
| 13 | 1+(−2.10+1.72i)T+(2.53−12.7i)T2 |
| 17 | 1+(1.28+0.531i)T+(12.0+12.0i)T2 |
| 19 | 1+(−0.136+1.38i)T+(−18.6−3.70i)T2 |
| 23 | 1+(−3.76−0.749i)T+(21.2+8.80i)T2 |
| 29 | 1+(1.26+4.16i)T+(−24.1+16.1i)T2 |
| 31 | 1+(−0.429+0.429i)T−31iT2 |
| 37 | 1+(−9.15+0.902i)T+(36.2−7.21i)T2 |
| 41 | 1+(−0.0409+0.205i)T+(−37.8−15.6i)T2 |
| 43 | 1+(−0.656+0.350i)T+(23.8−35.7i)T2 |
| 47 | 1+(1.66−4.01i)T+(−33.2−33.2i)T2 |
| 53 | 1+(−2.99+9.86i)T+(−44.0−29.4i)T2 |
| 59 | 1+(1.91+1.57i)T+(11.5+57.8i)T2 |
| 61 | 1+(−6.69+12.5i)T+(−33.8−50.7i)T2 |
| 67 | 1+(5.87−10.9i)T+(−37.2−55.7i)T2 |
| 71 | 1+(1.22−1.83i)T+(−27.1−65.5i)T2 |
| 73 | 1+(−4.58+3.06i)T+(27.9−67.4i)T2 |
| 79 | 1+(−2.27−5.49i)T+(−55.8+55.8i)T2 |
| 83 | 1+(7.02+0.691i)T+(81.4+16.1i)T2 |
| 89 | 1+(14.5−2.89i)T+(82.2−34.0i)T2 |
| 97 | 1+(−7.28+7.28i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48957226474368456594356960873, −11.04476330351685157171844998532, −9.585608222422790701792064957093, −8.526341491186007356861932140910, −7.896576152031804732350559159583, −6.95242469739416326902466659184, −5.72774436141476622855915888569, −4.79626196138047377357566560957, −3.61900774918983177860402969574, −2.58031704336840290658352333519,
1.28450904500149154822904803008, 2.69073783774904859692863747365, 4.01908839830142223610661758730, 4.82020850013376936145445942416, 6.12279593196783262957449467140, 7.28596403164716075860441585977, 8.405604168614777756615093075802, 9.255350084311444488115264290387, 10.40786226298361561353566098163, 11.13850017092324574044274160445