L(s) = 1 | + (1.38 + 0.283i)2-s + (−0.881 + 0.471i)3-s + (1.83 + 0.785i)4-s + (−0.311 − 0.379i)5-s + (−1.35 + 0.403i)6-s + (2.05 − 1.37i)7-s + (2.32 + 1.60i)8-s + (0.555 − 0.831i)9-s + (−0.324 − 0.614i)10-s + (0.708 − 0.215i)11-s + (−1.99 + 0.174i)12-s + (1.87 + 1.54i)13-s + (3.24 − 1.32i)14-s + (0.453 + 0.187i)15-s + (2.76 + 2.88i)16-s + (0.338 − 0.140i)17-s + ⋯ |
L(s) = 1 | + (0.979 + 0.200i)2-s + (−0.509 + 0.272i)3-s + (0.919 + 0.392i)4-s + (−0.139 − 0.169i)5-s + (−0.553 + 0.164i)6-s + (0.777 − 0.519i)7-s + (0.822 + 0.569i)8-s + (0.185 − 0.277i)9-s + (−0.102 − 0.194i)10-s + (0.213 − 0.0648i)11-s + (−0.575 + 0.0502i)12-s + (0.521 + 0.427i)13-s + (0.866 − 0.353i)14-s + (0.117 + 0.0485i)15-s + (0.691 + 0.722i)16-s + (0.0822 − 0.0340i)17-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.876−0.480i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(0.876−0.480i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.876−0.480i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(229,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), 0.876−0.480i)
|
Particular Values
L(1) |
≈ |
2.18586+0.559941i |
L(21) |
≈ |
2.18586+0.559941i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.38−0.283i)T |
| 3 | 1+(0.881−0.471i)T |
good | 5 | 1+(0.311+0.379i)T+(−0.975+4.90i)T2 |
| 7 | 1+(−2.05+1.37i)T+(2.67−6.46i)T2 |
| 11 | 1+(−0.708+0.215i)T+(9.14−6.11i)T2 |
| 13 | 1+(−1.87−1.54i)T+(2.53+12.7i)T2 |
| 17 | 1+(−0.338+0.140i)T+(12.0−12.0i)T2 |
| 19 | 1+(−0.634−6.44i)T+(−18.6+3.70i)T2 |
| 23 | 1+(7.28−1.44i)T+(21.2−8.80i)T2 |
| 29 | 1+(−0.561+1.84i)T+(−24.1−16.1i)T2 |
| 31 | 1+(5.57+5.57i)T+31iT2 |
| 37 | 1+(−6.92−0.681i)T+(36.2+7.21i)T2 |
| 41 | 1+(0.989+4.97i)T+(−37.8+15.6i)T2 |
| 43 | 1+(5.69+3.04i)T+(23.8+35.7i)T2 |
| 47 | 1+(1.01+2.44i)T+(−33.2+33.2i)T2 |
| 53 | 1+(2.92+9.62i)T+(−44.0+29.4i)T2 |
| 59 | 1+(8.85−7.26i)T+(11.5−57.8i)T2 |
| 61 | 1+(−0.238−0.445i)T+(−33.8+50.7i)T2 |
| 67 | 1+(−1.29−2.41i)T+(−37.2+55.7i)T2 |
| 71 | 1+(−0.719−1.07i)T+(−27.1+65.5i)T2 |
| 73 | 1+(0.675+0.451i)T+(27.9+67.4i)T2 |
| 79 | 1+(−3.41+8.25i)T+(−55.8−55.8i)T2 |
| 83 | 1+(11.2−1.11i)T+(81.4−16.1i)T2 |
| 89 | 1+(9.94+1.97i)T+(82.2+34.0i)T2 |
| 97 | 1+(−1.02−1.02i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.64378136740116937443839286396, −10.75877595514292558268105182763, −9.885987810078444797782193560804, −8.302989762358513271469142061791, −7.59467055968497960718331787413, −6.34003483580751085176651148794, −5.59364424426620199676162935857, −4.36731414447397830681258373694, −3.77687349066173742865966072683, −1.77710229957004080504139516424,
1.60411158065659281031962977796, 3.05127339966517342619182212923, 4.47712683045955537079779590812, 5.35538030299224001002000704031, 6.27853083913904462674373850411, 7.26137764927665780460418201697, 8.285875591158980316965877695559, 9.646090024940872781561859601972, 10.97597744798518270507786180914, 11.22290589663022689618589628469