L(s) = 1 | + (1.19 + 0.755i)2-s + (0.881 − 0.471i)3-s + (0.857 + 1.80i)4-s + (0.324 + 0.396i)5-s + (1.41 + 0.103i)6-s + (−2.62 + 1.75i)7-s + (−0.341 + 2.80i)8-s + (0.555 − 0.831i)9-s + (0.0890 + 0.718i)10-s + (2.66 − 0.809i)11-s + (1.60 + 1.18i)12-s + (3.50 + 2.87i)13-s + (−4.46 + 0.112i)14-s + (0.473 + 0.196i)15-s + (−2.53 + 3.09i)16-s + (−1.24 + 0.514i)17-s + ⋯ |
L(s) = 1 | + (0.845 + 0.534i)2-s + (0.509 − 0.272i)3-s + (0.428 + 0.903i)4-s + (0.145 + 0.177i)5-s + (0.575 + 0.0421i)6-s + (−0.992 + 0.662i)7-s + (−0.120 + 0.992i)8-s + (0.185 − 0.277i)9-s + (0.0281 + 0.227i)10-s + (0.804 − 0.243i)11-s + (0.464 + 0.343i)12-s + (0.973 + 0.798i)13-s + (−1.19 + 0.0299i)14-s + (0.122 + 0.0506i)15-s + (−0.632 + 0.774i)16-s + (−0.301 + 0.124i)17-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(0.446−0.894i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(0.446−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
0.446−0.894i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(229,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), 0.446−0.894i)
|
Particular Values
L(1) |
≈ |
2.08197+1.28836i |
L(21) |
≈ |
2.08197+1.28836i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.19−0.755i)T |
| 3 | 1+(−0.881+0.471i)T |
good | 5 | 1+(−0.324−0.396i)T+(−0.975+4.90i)T2 |
| 7 | 1+(2.62−1.75i)T+(2.67−6.46i)T2 |
| 11 | 1+(−2.66+0.809i)T+(9.14−6.11i)T2 |
| 13 | 1+(−3.50−2.87i)T+(2.53+12.7i)T2 |
| 17 | 1+(1.24−0.514i)T+(12.0−12.0i)T2 |
| 19 | 1+(0.508+5.16i)T+(−18.6+3.70i)T2 |
| 23 | 1+(−0.610+0.121i)T+(21.2−8.80i)T2 |
| 29 | 1+(−1.53+5.06i)T+(−24.1−16.1i)T2 |
| 31 | 1+(4.71+4.71i)T+31iT2 |
| 37 | 1+(0.337+0.0332i)T+(36.2+7.21i)T2 |
| 41 | 1+(0.532+2.67i)T+(−37.8+15.6i)T2 |
| 43 | 1+(4.98+2.66i)T+(23.8+35.7i)T2 |
| 47 | 1+(−2.42−5.85i)T+(−33.2+33.2i)T2 |
| 53 | 1+(−3.19−10.5i)T+(−44.0+29.4i)T2 |
| 59 | 1+(10.5−8.66i)T+(11.5−57.8i)T2 |
| 61 | 1+(1.48+2.77i)T+(−33.8+50.7i)T2 |
| 67 | 1+(5.88+11.0i)T+(−37.2+55.7i)T2 |
| 71 | 1+(4.98+7.45i)T+(−27.1+65.5i)T2 |
| 73 | 1+(−6.36−4.25i)T+(27.9+67.4i)T2 |
| 79 | 1+(−3.81+9.21i)T+(−55.8−55.8i)T2 |
| 83 | 1+(−12.4+1.22i)T+(81.4−16.1i)T2 |
| 89 | 1+(−12.3−2.45i)T+(82.2+34.0i)T2 |
| 97 | 1+(4.31+4.31i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.80726465088447801809203936952, −10.81925962432706882078873813872, −9.171042501514572017787818352499, −8.882570928759017211725390472648, −7.54956972659997407885009421772, −6.33921029106982572069739512610, −6.22523988090503505899846601603, −4.46362214801544550403374400658, −3.42269140370008155292988479275, −2.31641331963299723725309191666,
1.47746986677270387049355725629, 3.31728821969332947459250254220, 3.76382713583253674623070498112, 5.14657035866900396714108742925, 6.29294771571079693766603621632, 7.14874762159738996609566663762, 8.635464121696420418617630915017, 9.613535169650799520918292629332, 10.32530705249393316551952674440, 11.09986252947441547157263552603