L(s) = 1 | + (0.618 − 1.61i)3-s − 3.23i·5-s + 1.23i·7-s + (−2.23 − 2.00i)9-s + 5.23·11-s − 4.47·13-s + (−5.23 − 2.00i)15-s − 2.47i·17-s + 0.763i·19-s + (2.00 + 0.763i)21-s − 2.47·23-s − 5.47·25-s + (−4.61 + 2.38i)27-s − 4.76i·29-s + 5.23i·31-s + ⋯ |
L(s) = 1 | + (0.356 − 0.934i)3-s − 1.44i·5-s + 0.467i·7-s + (−0.745 − 0.666i)9-s + 1.57·11-s − 1.24·13-s + (−1.35 − 0.516i)15-s − 0.599i·17-s + 0.175i·19-s + (0.436 + 0.166i)21-s − 0.515·23-s − 1.09·25-s + (−0.888 + 0.458i)27-s − 0.884i·29-s + 0.940i·31-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)(−0.356+0.934i)Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)(−0.356+0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
384
= 27⋅3
|
Sign: |
−0.356+0.934i
|
Analytic conductor: |
3.06625 |
Root analytic conductor: |
1.75107 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ384(383,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 384, ( :1/2), −0.356+0.934i)
|
Particular Values
L(1) |
≈ |
0.821977−1.19386i |
L(21) |
≈ |
0.821977−1.19386i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.618+1.61i)T |
good | 5 | 1+3.23iT−5T2 |
| 7 | 1−1.23iT−7T2 |
| 11 | 1−5.23T+11T2 |
| 13 | 1+4.47T+13T2 |
| 17 | 1+2.47iT−17T2 |
| 19 | 1−0.763iT−19T2 |
| 23 | 1+2.47T+23T2 |
| 29 | 1+4.76iT−29T2 |
| 31 | 1−5.23iT−31T2 |
| 37 | 1−8.47T+37T2 |
| 41 | 1−6.47iT−41T2 |
| 43 | 1+7.23iT−43T2 |
| 47 | 1−8T+47T2 |
| 53 | 1+3.23iT−53T2 |
| 59 | 1+1.23T+59T2 |
| 61 | 1−0.472T+61T2 |
| 67 | 1−9.70iT−67T2 |
| 71 | 1−15.4T+71T2 |
| 73 | 1+2T+73T2 |
| 79 | 1−0.291iT−79T2 |
| 83 | 1−2.76T+83T2 |
| 89 | 1−4iT−89T2 |
| 97 | 1−0.472T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.59955937811697387787218550642, −9.700004049350334869849213063187, −9.123085472392491002397589723884, −8.375311004136550745503923058818, −7.38768480962131930711332998032, −6.31772620663705454161691159052, −5.24017022313894892514145531576, −4.06233545444411783821465339472, −2.34162863280202814876175064112, −0.990795964148147302576711378088,
2.41150850783916056386223581536, 3.59307890147807467427570262616, 4.39857266292059540737170685877, 5.95528125231371632951653869061, 6.93886039116066102818692117218, 7.81355643235460799238542660951, 9.169719782415862563373545761261, 9.835940482815470902539602454077, 10.66935905546697630113358430958, 11.31235256190131899215838706657