L(s) = 1 | + (0.618 − 1.61i)3-s − 3.23i·5-s + 1.23i·7-s + (−2.23 − 2.00i)9-s + 5.23·11-s − 4.47·13-s + (−5.23 − 2.00i)15-s − 2.47i·17-s + 0.763i·19-s + (2.00 + 0.763i)21-s − 2.47·23-s − 5.47·25-s + (−4.61 + 2.38i)27-s − 4.76i·29-s + 5.23i·31-s + ⋯ |
L(s) = 1 | + (0.356 − 0.934i)3-s − 1.44i·5-s + 0.467i·7-s + (−0.745 − 0.666i)9-s + 1.57·11-s − 1.24·13-s + (−1.35 − 0.516i)15-s − 0.599i·17-s + 0.175i·19-s + (0.436 + 0.166i)21-s − 0.515·23-s − 1.09·25-s + (−0.888 + 0.458i)27-s − 0.884i·29-s + 0.940i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.356 + 0.934i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.356 + 0.934i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.821977 - 1.19386i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.821977 - 1.19386i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.618 + 1.61i)T \) |
good | 5 | \( 1 + 3.23iT - 5T^{2} \) |
| 7 | \( 1 - 1.23iT - 7T^{2} \) |
| 11 | \( 1 - 5.23T + 11T^{2} \) |
| 13 | \( 1 + 4.47T + 13T^{2} \) |
| 17 | \( 1 + 2.47iT - 17T^{2} \) |
| 19 | \( 1 - 0.763iT - 19T^{2} \) |
| 23 | \( 1 + 2.47T + 23T^{2} \) |
| 29 | \( 1 + 4.76iT - 29T^{2} \) |
| 31 | \( 1 - 5.23iT - 31T^{2} \) |
| 37 | \( 1 - 8.47T + 37T^{2} \) |
| 41 | \( 1 - 6.47iT - 41T^{2} \) |
| 43 | \( 1 + 7.23iT - 43T^{2} \) |
| 47 | \( 1 - 8T + 47T^{2} \) |
| 53 | \( 1 + 3.23iT - 53T^{2} \) |
| 59 | \( 1 + 1.23T + 59T^{2} \) |
| 61 | \( 1 - 0.472T + 61T^{2} \) |
| 67 | \( 1 - 9.70iT - 67T^{2} \) |
| 71 | \( 1 - 15.4T + 71T^{2} \) |
| 73 | \( 1 + 2T + 73T^{2} \) |
| 79 | \( 1 - 0.291iT - 79T^{2} \) |
| 83 | \( 1 - 2.76T + 83T^{2} \) |
| 89 | \( 1 - 4iT - 89T^{2} \) |
| 97 | \( 1 - 0.472T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.59955937811697387787218550642, −9.700004049350334869849213063187, −9.123085472392491002397589723884, −8.375311004136550745503923058818, −7.38768480962131930711332998032, −6.31772620663705454161691159052, −5.24017022313894892514145531576, −4.06233545444411783821465339472, −2.34162863280202814876175064112, −0.990795964148147302576711378088,
2.41150850783916056386223581536, 3.59307890147807467427570262616, 4.39857266292059540737170685877, 5.95528125231371632951653869061, 6.93886039116066102818692117218, 7.81355643235460799238542660951, 9.169719782415862563373545761261, 9.835940482815470902539602454077, 10.66935905546697630113358430958, 11.31235256190131899215838706657