L(s) = 1 | − 3-s − 2·7-s + 9-s − 4·11-s − 6·13-s + 6·17-s + 2·21-s − 4·23-s − 5·25-s − 27-s − 4·29-s − 10·31-s + 4·33-s − 2·37-s + 6·39-s − 2·41-s + 8·43-s + 12·47-s − 3·49-s − 6·51-s + 12·53-s − 4·59-s − 2·61-s − 2·63-s + 4·67-s + 4·69-s + 4·71-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 0.755·7-s + 1/3·9-s − 1.20·11-s − 1.66·13-s + 1.45·17-s + 0.436·21-s − 0.834·23-s − 25-s − 0.192·27-s − 0.742·29-s − 1.79·31-s + 0.696·33-s − 0.328·37-s + 0.960·39-s − 0.312·41-s + 1.21·43-s + 1.75·47-s − 3/7·49-s − 0.840·51-s + 1.64·53-s − 0.520·59-s − 0.256·61-s − 0.251·63-s + 0.488·67-s + 0.481·69-s + 0.474·71-s + ⋯ |
Λ(s)=(=(384s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(384s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+T |
good | 5 | 1+pT2 |
| 7 | 1+2T+pT2 |
| 11 | 1+4T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1+10T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+2T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−12T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1+2T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−4T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1−6T+pT2 |
| 83 | 1−12T+pT2 |
| 89 | 1−2T+pT2 |
| 97 | 1+6T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.72157176858504266602545238224, −10.03012842475637444340101123739, −9.355375973689939441990781827382, −7.73185283482156320096864018539, −7.29744951786402483785793531451, −5.81271121311664380914911812156, −5.25073137830748218691985779847, −3.77490371552045331982722842815, −2.36547685273488160999702672858, 0,
2.36547685273488160999702672858, 3.77490371552045331982722842815, 5.25073137830748218691985779847, 5.81271121311664380914911812156, 7.29744951786402483785793531451, 7.73185283482156320096864018539, 9.355375973689939441990781827382, 10.03012842475637444340101123739, 10.72157176858504266602545238224