Properties

Label 2-384-1.1-c1-0-1
Degree 22
Conductor 384384
Sign 11
Analytic cond. 3.066253.06625
Root an. cond. 1.751071.75107
Motivic weight 11
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s − 4·11-s + 6·13-s + 6·17-s − 2·21-s + 4·23-s − 5·25-s − 27-s + 4·29-s + 10·31-s + 4·33-s + 2·37-s − 6·39-s − 2·41-s + 8·43-s − 12·47-s − 3·49-s − 6·51-s − 12·53-s − 4·59-s + 2·61-s + 2·63-s + 4·67-s − 4·69-s − 4·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s − 1.20·11-s + 1.66·13-s + 1.45·17-s − 0.436·21-s + 0.834·23-s − 25-s − 0.192·27-s + 0.742·29-s + 1.79·31-s + 0.696·33-s + 0.328·37-s − 0.960·39-s − 0.312·41-s + 1.21·43-s − 1.75·47-s − 3/7·49-s − 0.840·51-s − 1.64·53-s − 0.520·59-s + 0.256·61-s + 0.251·63-s + 0.488·67-s − 0.481·69-s − 0.474·71-s + ⋯

Functional equation

Λ(s)=(384s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}
Λ(s)=(384s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 384 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 384384    =    2732^{7} \cdot 3
Sign: 11
Analytic conductor: 3.066253.06625
Root analytic conductor: 1.751071.75107
Motivic weight: 11
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 384, ( :1/2), 1)(2,\ 384,\ (\ :1/2),\ 1)

Particular Values

L(1)L(1) \approx 1.2654142521.265414252
L(12)L(\frac12) \approx 1.2654142521.265414252
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+T 1 + T
good5 1+pT2 1 + p T^{2}
7 12T+pT2 1 - 2 T + p T^{2}
11 1+4T+pT2 1 + 4 T + p T^{2}
13 16T+pT2 1 - 6 T + p T^{2}
17 16T+pT2 1 - 6 T + p T^{2}
19 1+pT2 1 + p T^{2}
23 14T+pT2 1 - 4 T + p T^{2}
29 14T+pT2 1 - 4 T + p T^{2}
31 110T+pT2 1 - 10 T + p T^{2}
37 12T+pT2 1 - 2 T + p T^{2}
41 1+2T+pT2 1 + 2 T + p T^{2}
43 18T+pT2 1 - 8 T + p T^{2}
47 1+12T+pT2 1 + 12 T + p T^{2}
53 1+12T+pT2 1 + 12 T + p T^{2}
59 1+4T+pT2 1 + 4 T + p T^{2}
61 12T+pT2 1 - 2 T + p T^{2}
67 14T+pT2 1 - 4 T + p T^{2}
71 1+4T+pT2 1 + 4 T + p T^{2}
73 1+10T+pT2 1 + 10 T + p T^{2}
79 1+6T+pT2 1 + 6 T + p T^{2}
83 112T+pT2 1 - 12 T + p T^{2}
89 12T+pT2 1 - 2 T + p T^{2}
97 1+6T+pT2 1 + 6 T + p T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−11.26026602445558485918915487570, −10.59394573181229341824784268538, −9.710853337608498914769336043468, −8.272861522300808832842531458007, −7.83756825226352882885863464519, −6.40139715881748782453956361829, −5.52928834758807112839354938677, −4.57667813854686016923499181308, −3.12662782741322079682173901720, −1.27109672072212401682622254955, 1.27109672072212401682622254955, 3.12662782741322079682173901720, 4.57667813854686016923499181308, 5.52928834758807112839354938677, 6.40139715881748782453956361829, 7.83756825226352882885863464519, 8.272861522300808832842531458007, 9.710853337608498914769336043468, 10.59394573181229341824784268538, 11.26026602445558485918915487570

Graph of the ZZ-function along the critical line