| L(s) = 1 | + (0.951 − 0.309i)4-s + (0.707 − 0.707i)5-s + (1.04 − 1.44i)11-s + (−0.221 + 1.39i)13-s + (0.809 − 0.587i)16-s + (0.453 + 0.891i)17-s + (−1.80 − 0.587i)19-s + (0.453 − 0.891i)20-s + (−0.253 − 1.59i)23-s − 1.00i·25-s + (−0.0966 − 0.297i)29-s + (1.16 + 1.59i)41-s + (−1.26 + 1.26i)43-s + (0.550 − 1.69i)44-s + i·49-s + ⋯ |
| L(s) = 1 | + (0.951 − 0.309i)4-s + (0.707 − 0.707i)5-s + (1.04 − 1.44i)11-s + (−0.221 + 1.39i)13-s + (0.809 − 0.587i)16-s + (0.453 + 0.891i)17-s + (−1.80 − 0.587i)19-s + (0.453 − 0.891i)20-s + (−0.253 − 1.59i)23-s − 1.00i·25-s + (−0.0966 − 0.297i)29-s + (1.16 + 1.59i)41-s + (−1.26 + 1.26i)43-s + (0.550 − 1.69i)44-s + i·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 + 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.612 + 0.790i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(1.911978344\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.911978344\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
| 17 | \( 1 + (-0.453 - 0.891i)T \) |
| good | 2 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (-1.04 + 1.44i)T + (-0.309 - 0.951i)T^{2} \) |
| 13 | \( 1 + (0.221 - 1.39i)T + (-0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
| 23 | \( 1 + (0.253 + 1.59i)T + (-0.951 + 0.309i)T^{2} \) |
| 29 | \( 1 + (0.0966 + 0.297i)T + (-0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.951 - 0.309i)T^{2} \) |
| 41 | \( 1 + (-1.16 - 1.59i)T + (-0.309 + 0.951i)T^{2} \) |
| 43 | \( 1 + (1.26 - 1.26i)T - iT^{2} \) |
| 47 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 53 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 67 | \( 1 + (0.278 - 0.142i)T + (0.587 - 0.809i)T^{2} \) |
| 71 | \( 1 + (0.863 - 0.280i)T + (0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 79 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.622437816816513427569749650497, −8.012992412067247168254013593956, −6.69689503925259665432233534697, −6.22935288688459380883012508532, −6.05072651593314379282098892630, −4.68693723652641585638376714840, −4.11498977294663121970922920437, −2.83950617769150269718323448300, −1.96634604382805964461331435510, −1.14155210228755438596778607108,
1.68796842745572269129910650005, 2.23552011640445445862400917844, 3.25671659761812917556816527157, 3.95915507587039593325684082233, 5.25756190802951804410137676505, 5.88999332175425051729586359139, 6.70441716864833444899815003750, 7.24781461440468457911748114638, 7.74231928173857480892074267091, 8.805388720752172180390762890245