| L(s) = 1 | + (1.81 − 0.750i)2-s + (2.01 − 2.01i)4-s + (1.38 − 3.34i)8-s − 4.26i·16-s + (0.980 + 0.195i)17-s + (−0.707 + 0.292i)19-s + (−1.38 + 0.275i)23-s + (−0.324 + 1.63i)31-s + (−1.81 − 4.37i)32-s + (1.92 − 0.382i)34-s + (−1.06 + 1.06i)38-s + (−2.30 + 1.54i)46-s + (−0.785 − 0.785i)47-s + (0.382 + 0.923i)49-s + (0.360 − 0.149i)53-s + ⋯ |
| L(s) = 1 | + (1.81 − 0.750i)2-s + (2.01 − 2.01i)4-s + (1.38 − 3.34i)8-s − 4.26i·16-s + (0.980 + 0.195i)17-s + (−0.707 + 0.292i)19-s + (−1.38 + 0.275i)23-s + (−0.324 + 1.63i)31-s + (−1.81 − 4.37i)32-s + (1.92 − 0.382i)34-s + (−1.06 + 1.06i)38-s + (−2.30 + 1.54i)46-s + (−0.785 − 0.785i)47-s + (0.382 + 0.923i)49-s + (0.360 − 0.149i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0101 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0101 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(3.878527165\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.878527165\) |
| \(L(1)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-0.980 - 0.195i)T \) |
| good | 2 | \( 1 + (-1.81 + 0.750i)T + (0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 11 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (0.707 - 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (1.38 - 0.275i)T + (0.923 - 0.382i)T^{2} \) |
| 29 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 31 | \( 1 + (0.324 - 1.63i)T + (-0.923 - 0.382i)T^{2} \) |
| 37 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 41 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 43 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + (0.785 + 0.785i)T + iT^{2} \) |
| 53 | \( 1 + (-0.360 + 0.149i)T + (0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.923 - 0.617i)T + (0.382 + 0.923i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 73 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 79 | \( 1 + (0.216 + 1.08i)T + (-0.923 + 0.382i)T^{2} \) |
| 83 | \( 1 + (0.149 + 0.360i)T + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.407963933500221585911628836934, −7.44660650353347441285321951084, −6.68542353342539568661697716936, −5.94076005907018419550714866034, −5.40911142678229820156739164798, −4.57937316324487643025428502059, −3.81321154147646523932739508184, −3.21662155738462209255062020347, −2.20489175276601220627153245670, −1.37775794673591043216784696420,
1.99141159140605201018449142941, 2.78801082466387588189093958376, 3.79688421176242545531668286824, 4.24769197545962628508901739524, 5.19630340622550365728884786438, 5.79447798846833498408851343255, 6.42826606835653732377961612056, 7.14246037614310989904548802725, 7.937076387287994141446677582977, 8.318244432622161829086752134380