L(s) = 1 | + (−0.360 + 0.149i)2-s + (−0.599 + 0.599i)4-s + (0.275 − 0.666i)8-s − 0.566i·16-s + (0.195 − 0.980i)17-s + (−0.707 + 0.292i)19-s + (−0.275 − 1.38i)23-s + (−1.08 − 0.216i)31-s + (0.360 + 0.870i)32-s + (0.0761 + 0.382i)34-s + (0.211 − 0.211i)38-s + (0.306 + 0.458i)46-s + (−1.17 − 1.17i)47-s + (−0.382 − 0.923i)49-s + (1.81 − 0.750i)53-s + ⋯ |
L(s) = 1 | + (−0.360 + 0.149i)2-s + (−0.599 + 0.599i)4-s + (0.275 − 0.666i)8-s − 0.566i·16-s + (0.195 − 0.980i)17-s + (−0.707 + 0.292i)19-s + (−0.275 − 1.38i)23-s + (−1.08 − 0.216i)31-s + (0.360 + 0.870i)32-s + (0.0761 + 0.382i)34-s + (0.211 − 0.211i)38-s + (0.306 + 0.458i)46-s + (−1.17 − 1.17i)47-s + (−0.382 − 0.923i)49-s + (1.81 − 0.750i)53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.434 + 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3825 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.434 + 0.900i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6175893966\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6175893966\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 17 | \( 1 + (-0.195 + 0.980i)T \) |
good | 2 | \( 1 + (0.360 - 0.149i)T + (0.707 - 0.707i)T^{2} \) |
| 7 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 11 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 13 | \( 1 + iT^{2} \) |
| 19 | \( 1 + (0.707 - 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 23 | \( 1 + (0.275 + 1.38i)T + (-0.923 + 0.382i)T^{2} \) |
| 29 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 31 | \( 1 + (1.08 + 0.216i)T + (0.923 + 0.382i)T^{2} \) |
| 37 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 41 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 47 | \( 1 + (1.17 + 1.17i)T + iT^{2} \) |
| 53 | \( 1 + (-1.81 + 0.750i)T + (0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (0.923 - 1.38i)T + (-0.382 - 0.923i)T^{2} \) |
| 67 | \( 1 - T^{2} \) |
| 71 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (0.382 - 0.923i)T^{2} \) |
| 79 | \( 1 + (-1.63 + 0.324i)T + (0.923 - 0.382i)T^{2} \) |
| 83 | \( 1 + (0.750 + 1.81i)T + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.648968970251408233088006777986, −7.88153962101476533366560740434, −7.17304960844125977116845134995, −6.53573755623174881818465870647, −5.48260577484509157118947492437, −4.68624688664794291511315060536, −3.95452087428937047803451480871, −3.11343663681364616753024096487, −2.03863750553205744893307562249, −0.42957157476239322507773412283,
1.27885230584865318480112484556, 2.12351019316712984751078572689, 3.45249030985894500276647186374, 4.23929593808820404227973089875, 5.09706983963484135987816234754, 5.80731607621068446863044721342, 6.46700698184290630073515726545, 7.54730790124402759219477684972, 8.151023781696305630355109441436, 8.915024066700706033120218712860