L(s) = 1 | + 2-s − 3-s + 4-s − 3.56·5-s − 6-s + 8-s + 9-s − 3.56·10-s − 1.56·11-s − 12-s − 13-s + 3.56·15-s + 16-s + 6.68·17-s + 18-s + 4.68·19-s − 3.56·20-s − 1.56·22-s − 5.56·23-s − 24-s + 7.68·25-s − 26-s − 27-s + 6.68·29-s + 3.56·30-s − 6.24·31-s + 32-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.59·5-s − 0.408·6-s + 0.353·8-s + 0.333·9-s − 1.12·10-s − 0.470·11-s − 0.288·12-s − 0.277·13-s + 0.919·15-s + 0.250·16-s + 1.62·17-s + 0.235·18-s + 1.07·19-s − 0.796·20-s − 0.332·22-s − 1.15·23-s − 0.204·24-s + 1.53·25-s − 0.196·26-s − 0.192·27-s + 1.24·29-s + 0.650·30-s − 1.12·31-s + 0.176·32-s + ⋯ |
Λ(s)=(=(3822s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3822s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 7 | 1 |
| 13 | 1+T |
good | 5 | 1+3.56T+5T2 |
| 11 | 1+1.56T+11T2 |
| 17 | 1−6.68T+17T2 |
| 19 | 1−4.68T+19T2 |
| 23 | 1+5.56T+23T2 |
| 29 | 1−6.68T+29T2 |
| 31 | 1+6.24T+31T2 |
| 37 | 1+7.56T+37T2 |
| 41 | 1−1.12T+41T2 |
| 43 | 1+6.43T+43T2 |
| 47 | 1+47T2 |
| 53 | 1−12.2T+53T2 |
| 59 | 1+2.24T+59T2 |
| 61 | 1+6.68T+61T2 |
| 67 | 1+7.12T+67T2 |
| 71 | 1−8T+71T2 |
| 73 | 1−3.56T+73T2 |
| 79 | 1+11.1T+79T2 |
| 83 | 1+8.87T+83T2 |
| 89 | 1+10T+89T2 |
| 97 | 1+14.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.83442632807584960067983105142, −7.42590511407383774850594312249, −6.72209315384959419675421368395, −5.58704493595776581039852349174, −5.19446594025614260546394525330, −4.23527472924228621408260472248, −3.59844997507620280971808870077, −2.86985591270793636190150429916, −1.31591471145023310684852207232, 0,
1.31591471145023310684852207232, 2.86985591270793636190150429916, 3.59844997507620280971808870077, 4.23527472924228621408260472248, 5.19446594025614260546394525330, 5.58704493595776581039852349174, 6.72209315384959419675421368395, 7.42590511407383774850594312249, 7.83442632807584960067983105142