Properties

Label 2-3822-1.1-c1-0-54
Degree $2$
Conductor $3822$
Sign $-1$
Analytic cond. $30.5188$
Root an. cond. $5.52438$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 3.56·5-s − 6-s + 8-s + 9-s − 3.56·10-s − 1.56·11-s − 12-s − 13-s + 3.56·15-s + 16-s + 6.68·17-s + 18-s + 4.68·19-s − 3.56·20-s − 1.56·22-s − 5.56·23-s − 24-s + 7.68·25-s − 26-s − 27-s + 6.68·29-s + 3.56·30-s − 6.24·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 1.59·5-s − 0.408·6-s + 0.353·8-s + 0.333·9-s − 1.12·10-s − 0.470·11-s − 0.288·12-s − 0.277·13-s + 0.919·15-s + 0.250·16-s + 1.62·17-s + 0.235·18-s + 1.07·19-s − 0.796·20-s − 0.332·22-s − 1.15·23-s − 0.204·24-s + 1.53·25-s − 0.196·26-s − 0.192·27-s + 1.24·29-s + 0.650·30-s − 1.12·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3822 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3822\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(30.5188\)
Root analytic conductor: \(5.52438\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3822,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 3.56T + 5T^{2} \)
11 \( 1 + 1.56T + 11T^{2} \)
17 \( 1 - 6.68T + 17T^{2} \)
19 \( 1 - 4.68T + 19T^{2} \)
23 \( 1 + 5.56T + 23T^{2} \)
29 \( 1 - 6.68T + 29T^{2} \)
31 \( 1 + 6.24T + 31T^{2} \)
37 \( 1 + 7.56T + 37T^{2} \)
41 \( 1 - 1.12T + 41T^{2} \)
43 \( 1 + 6.43T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 12.2T + 53T^{2} \)
59 \( 1 + 2.24T + 59T^{2} \)
61 \( 1 + 6.68T + 61T^{2} \)
67 \( 1 + 7.12T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 - 3.56T + 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 + 8.87T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + 14.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.83442632807584960067983105142, −7.42590511407383774850594312249, −6.72209315384959419675421368395, −5.58704493595776581039852349174, −5.19446594025614260546394525330, −4.23527472924228621408260472248, −3.59844997507620280971808870077, −2.86985591270793636190150429916, −1.31591471145023310684852207232, 0, 1.31591471145023310684852207232, 2.86985591270793636190150429916, 3.59844997507620280971808870077, 4.23527472924228621408260472248, 5.19446594025614260546394525330, 5.58704493595776581039852349174, 6.72209315384959419675421368395, 7.42590511407383774850594312249, 7.83442632807584960067983105142

Graph of the $Z$-function along the critical line