L(s) = 1 | + i·2-s − 0.347i·3-s − 4-s + 0.347·6-s − 1.87i·7-s − i·8-s + 0.879·9-s + 0.347i·12-s − 1.53i·13-s + 1.87·14-s + 16-s + 1.53i·17-s + 0.879i·18-s − 19-s − 0.652·21-s + ⋯ |
L(s) = 1 | + i·2-s − 0.347i·3-s − 4-s + 0.347·6-s − 1.87i·7-s − i·8-s + 0.879·9-s + 0.347i·12-s − 1.53i·13-s + 1.87·14-s + 16-s + 1.53i·17-s + 0.879i·18-s − 19-s − 0.652·21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9694149988\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9694149988\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 \) |
| 19 | \( 1 + T \) |
good | 3 | \( 1 + 0.347iT - T^{2} \) |
| 7 | \( 1 + 1.87iT - T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + 1.53iT - T^{2} \) |
| 17 | \( 1 - 1.53iT - T^{2} \) |
| 23 | \( 1 + 0.347iT - T^{2} \) |
| 29 | \( 1 + 1.53T + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + iT - T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + iT - T^{2} \) |
| 53 | \( 1 - 1.87iT - T^{2} \) |
| 59 | \( 1 + 0.347T + T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 + 1.87iT - T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + 0.347iT - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.132989071453974875149839510057, −7.70324661072561302618240048991, −7.21606534151767797271862674683, −6.43146584569491643170574918343, −5.80847710748034343931523372180, −4.71758776344464674205871723641, −4.01147978866766937997893607457, −3.53530464658958635503126555797, −1.68525463392386657561590875773, −0.56370632011863495275363234968,
1.70478601775394990787670295736, 2.28381096615094497585937348680, 3.22465770066772047932746935620, 4.23774687609070138180374282642, 4.86512787631152544846727904971, 5.55581318457085695706283637694, 6.50131493694387895517405604411, 7.41047164321565970116125081102, 8.531103414624087194908622046897, 8.973915581017129654469215583479