L(s) = 1 | − 1.87i·3-s − 1.18i·7-s − 0.532·9-s − 2.18·11-s − 1.71i·13-s + 0.120i·17-s − 19-s − 2.22·21-s + 7.98i·23-s − 4.63i·27-s − 3.24·29-s − 8.41·31-s + 4.10i·33-s − 3.33i·37-s − 3.22·39-s + ⋯ |
L(s) = 1 | − 1.08i·3-s − 0.447i·7-s − 0.177·9-s − 0.658·11-s − 0.476i·13-s + 0.0292i·17-s − 0.229·19-s − 0.485·21-s + 1.66i·23-s − 0.892i·27-s − 0.603·29-s − 1.51·31-s + 0.714i·33-s − 0.547i·37-s − 0.516·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
0.1270865811 |
L(21) |
≈ |
0.1270865811 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1+1.87iT−3T2 |
| 7 | 1+1.18iT−7T2 |
| 11 | 1+2.18T+11T2 |
| 13 | 1+1.71iT−13T2 |
| 17 | 1−0.120iT−17T2 |
| 23 | 1−7.98iT−23T2 |
| 29 | 1+3.24T+29T2 |
| 31 | 1+8.41T+31T2 |
| 37 | 1+3.33iT−37T2 |
| 41 | 1+8.98T+41T2 |
| 43 | 1−4.06iT−43T2 |
| 47 | 1−1.71iT−47T2 |
| 53 | 1+6.51iT−53T2 |
| 59 | 1+10.2T+59T2 |
| 61 | 1−6.53T+61T2 |
| 67 | 1−2.18iT−67T2 |
| 71 | 1+9.12T+71T2 |
| 73 | 1−0.773iT−73T2 |
| 79 | 1+1.63T+79T2 |
| 83 | 1−2.44iT−83T2 |
| 89 | 1+2.83T+89T2 |
| 97 | 1−2.19iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.68930783344109921200700207694, −7.43817485568618181143280263689, −6.70816999770833889191373815655, −5.77132493892717145213010733259, −5.20205424644797917296673119903, −4.03646227151723195465242112445, −3.22035561157570939371629440643, −2.09747928391501751434868957842, −1.32219762162599696935788915247, −0.03559923574072089856798902916,
1.79172157845969179923588481772, 2.78471797770305866376345666209, 3.71819956131482776892507752241, 4.47249596264246437902778712816, 5.12282393664470916913127980416, 5.85036417657808291843218844911, 6.79669963382393703493986802937, 7.52252832826002017083922685909, 8.569290555695769117846639102555, 8.942681669265276737220300684282