Properties

Label 2-3800-5.4-c1-0-78
Degree $2$
Conductor $3800$
Sign $-0.447 - 0.894i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.87i·3-s − 1.18i·7-s − 0.532·9-s − 2.18·11-s − 1.71i·13-s + 0.120i·17-s − 19-s − 2.22·21-s + 7.98i·23-s − 4.63i·27-s − 3.24·29-s − 8.41·31-s + 4.10i·33-s − 3.33i·37-s − 3.22·39-s + ⋯
L(s)  = 1  − 1.08i·3-s − 0.447i·7-s − 0.177·9-s − 0.658·11-s − 0.476i·13-s + 0.0292i·17-s − 0.229·19-s − 0.485·21-s + 1.66i·23-s − 0.892i·27-s − 0.603·29-s − 1.51·31-s + 0.714i·33-s − 0.547i·37-s − 0.516·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.447 - 0.894i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.1270865811\)
\(L(\frac12)\) \(\approx\) \(0.1270865811\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 + T \)
good3 \( 1 + 1.87iT - 3T^{2} \)
7 \( 1 + 1.18iT - 7T^{2} \)
11 \( 1 + 2.18T + 11T^{2} \)
13 \( 1 + 1.71iT - 13T^{2} \)
17 \( 1 - 0.120iT - 17T^{2} \)
23 \( 1 - 7.98iT - 23T^{2} \)
29 \( 1 + 3.24T + 29T^{2} \)
31 \( 1 + 8.41T + 31T^{2} \)
37 \( 1 + 3.33iT - 37T^{2} \)
41 \( 1 + 8.98T + 41T^{2} \)
43 \( 1 - 4.06iT - 43T^{2} \)
47 \( 1 - 1.71iT - 47T^{2} \)
53 \( 1 + 6.51iT - 53T^{2} \)
59 \( 1 + 10.2T + 59T^{2} \)
61 \( 1 - 6.53T + 61T^{2} \)
67 \( 1 - 2.18iT - 67T^{2} \)
71 \( 1 + 9.12T + 71T^{2} \)
73 \( 1 - 0.773iT - 73T^{2} \)
79 \( 1 + 1.63T + 79T^{2} \)
83 \( 1 - 2.44iT - 83T^{2} \)
89 \( 1 + 2.83T + 89T^{2} \)
97 \( 1 - 2.19iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.68930783344109921200700207694, −7.43817485568618181143280263689, −6.70816999770833889191373815655, −5.77132493892717145213010733259, −5.20205424644797917296673119903, −4.03646227151723195465242112445, −3.22035561157570939371629440643, −2.09747928391501751434868957842, −1.32219762162599696935788915247, −0.03559923574072089856798902916, 1.79172157845969179923588481772, 2.78471797770305866376345666209, 3.71819956131482776892507752241, 4.47249596264246437902778712816, 5.12282393664470916913127980416, 5.85036417657808291843218844911, 6.79669963382393703493986802937, 7.52252832826002017083922685909, 8.569290555695769117846639102555, 8.942681669265276737220300684282

Graph of the $Z$-function along the critical line