L(s) = 1 | − 0.656i·3-s − 0.656i·7-s + 2.56·9-s − 0.343·11-s − 1.91i·13-s − 4.48i·17-s + 19-s − 0.431·21-s − 3.56i·23-s − 3.65i·27-s − 7.99·29-s + 5.73·31-s + 0.225i·33-s + 4.16i·37-s − 1.25·39-s + ⋯ |
L(s) = 1 | − 0.379i·3-s − 0.248i·7-s + 0.856·9-s − 0.103·11-s − 0.530i·13-s − 1.08i·17-s + 0.229·19-s − 0.0940·21-s − 0.744i·23-s − 0.703i·27-s − 1.48·29-s + 1.03·31-s + 0.0392i·33-s + 0.685i·37-s − 0.201·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
1.587021148 |
L(21) |
≈ |
1.587021148 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+0.656iT−3T2 |
| 7 | 1+0.656iT−7T2 |
| 11 | 1+0.343T+11T2 |
| 13 | 1+1.91iT−13T2 |
| 17 | 1+4.48iT−17T2 |
| 23 | 1+3.56iT−23T2 |
| 29 | 1+7.99T+29T2 |
| 31 | 1−5.73T+31T2 |
| 37 | 1−4.16iT−37T2 |
| 41 | 1+9.08T+41T2 |
| 43 | 1−3.51iT−43T2 |
| 47 | 1+3.40iT−47T2 |
| 53 | 1+1.68iT−53T2 |
| 59 | 1−7.82T+59T2 |
| 61 | 1+12.4T+61T2 |
| 67 | 1+9.48iT−67T2 |
| 71 | 1+9.96T+71T2 |
| 73 | 1−7.53iT−73T2 |
| 79 | 1−14.9T+79T2 |
| 83 | 1+10.9iT−83T2 |
| 89 | 1−4.19T+89T2 |
| 97 | 1+1.73iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.112964885168464244104191690574, −7.47634757340038166537035919684, −6.90396263227852816107272314130, −6.15930253904647669945888421527, −5.16466178950363103819083318308, −4.53496222725466273279326686745, −3.55297171408828834017597842906, −2.63909753318428756730844710575, −1.57440518974004092979092703762, −0.47451669956612729669134553388,
1.34930806915059113116715711415, 2.21941951284794359741144319074, 3.52026849561204917171305787522, 4.05181969328075046486303025632, 4.95004410902713635860150955305, 5.71464057947804517782289088387, 6.52144299507814607279830446923, 7.32592192071415454664632087420, 7.935185370146756678814597324560, 8.922112117753794363410118227625