L(s) = 1 | − 3.12i·3-s + 1.51i·7-s − 6.76·9-s + 4.24·11-s + 4.15i·13-s + 3.51i·17-s + 19-s + 4.73·21-s − 8.73i·23-s + 11.7i·27-s − 1.45·29-s − 4.96·31-s − 13.2i·33-s − 7.60i·37-s + 12.9·39-s + ⋯ |
L(s) = 1 | − 1.80i·3-s + 0.572i·7-s − 2.25·9-s + 1.28·11-s + 1.15i·13-s + 0.852i·17-s + 0.229·19-s + 1.03·21-s − 1.82i·23-s + 2.26i·27-s − 0.270·29-s − 0.892·31-s − 2.31i·33-s − 1.25i·37-s + 2.07·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.459487798 |
L(21) |
≈ |
1.459487798 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+3.12iT−3T2 |
| 7 | 1−1.51iT−7T2 |
| 11 | 1−4.24T+11T2 |
| 13 | 1−4.15iT−13T2 |
| 17 | 1−3.51iT−17T2 |
| 23 | 1+8.73iT−23T2 |
| 29 | 1+1.45T+29T2 |
| 31 | 1+4.96T+31T2 |
| 37 | 1+7.60iT−37T2 |
| 41 | 1+9.21T+41T2 |
| 43 | 1+8.31iT−43T2 |
| 47 | 1+5.28iT−47T2 |
| 53 | 1−0.155iT−53T2 |
| 59 | 1−2.48T+59T2 |
| 61 | 1+4.49T+61T2 |
| 67 | 1+7.43iT−67T2 |
| 71 | 1−8.49T+71T2 |
| 73 | 1+15.0iT−73T2 |
| 79 | 1−0.310T+79T2 |
| 83 | 1+8.96iT−83T2 |
| 89 | 1+0.719T+89T2 |
| 97 | 1+17.3iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.209311645943471055362800098633, −7.21255618833795909528357174289, −6.77435163943699376179243606848, −6.21390545134538307425292591799, −5.52493737294188245204323589832, −4.30000658686166837764257869129, −3.34144194769584065643569725860, −1.99705044600949965226312078625, −1.84532897939226261473956125606, −0.45307212494283683265168155256,
1.17584901098911734538775764151, 2.90191346162540345111680790215, 3.57585510684838047568963495053, 4.08609229368864350604986600749, 5.08517290111110321924192567687, 5.47219334891452742009069214968, 6.48563097191031575804088776563, 7.43674910045826543919413625320, 8.233767660586758626627529036797, 9.103639385913340344282876946568