Properties

Label 2-3800-5.4-c1-0-57
Degree $2$
Conductor $3800$
Sign $-0.894 + 0.447i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.12i·3-s + 1.51i·7-s − 6.76·9-s + 4.24·11-s + 4.15i·13-s + 3.51i·17-s + 19-s + 4.73·21-s − 8.73i·23-s + 11.7i·27-s − 1.45·29-s − 4.96·31-s − 13.2i·33-s − 7.60i·37-s + 12.9·39-s + ⋯
L(s)  = 1  − 1.80i·3-s + 0.572i·7-s − 2.25·9-s + 1.28·11-s + 1.15i·13-s + 0.852i·17-s + 0.229·19-s + 1.03·21-s − 1.82i·23-s + 2.26i·27-s − 0.270·29-s − 0.892·31-s − 2.31i·33-s − 1.25i·37-s + 2.07·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.459487798\)
\(L(\frac12)\) \(\approx\) \(1.459487798\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 3.12iT - 3T^{2} \)
7 \( 1 - 1.51iT - 7T^{2} \)
11 \( 1 - 4.24T + 11T^{2} \)
13 \( 1 - 4.15iT - 13T^{2} \)
17 \( 1 - 3.51iT - 17T^{2} \)
23 \( 1 + 8.73iT - 23T^{2} \)
29 \( 1 + 1.45T + 29T^{2} \)
31 \( 1 + 4.96T + 31T^{2} \)
37 \( 1 + 7.60iT - 37T^{2} \)
41 \( 1 + 9.21T + 41T^{2} \)
43 \( 1 + 8.31iT - 43T^{2} \)
47 \( 1 + 5.28iT - 47T^{2} \)
53 \( 1 - 0.155iT - 53T^{2} \)
59 \( 1 - 2.48T + 59T^{2} \)
61 \( 1 + 4.49T + 61T^{2} \)
67 \( 1 + 7.43iT - 67T^{2} \)
71 \( 1 - 8.49T + 71T^{2} \)
73 \( 1 + 15.0iT - 73T^{2} \)
79 \( 1 - 0.310T + 79T^{2} \)
83 \( 1 + 8.96iT - 83T^{2} \)
89 \( 1 + 0.719T + 89T^{2} \)
97 \( 1 + 17.3iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.209311645943471055362800098633, −7.21255618833795909528357174289, −6.77435163943699376179243606848, −6.21390545134538307425292591799, −5.52493737294188245204323589832, −4.30000658686166837764257869129, −3.34144194769584065643569725860, −1.99705044600949965226312078625, −1.84532897939226261473956125606, −0.45307212494283683265168155256, 1.17584901098911734538775764151, 2.90191346162540345111680790215, 3.57585510684838047568963495053, 4.08609229368864350604986600749, 5.08517290111110321924192567687, 5.47219334891452742009069214968, 6.48563097191031575804088776563, 7.43674910045826543919413625320, 8.233767660586758626627529036797, 9.103639385913340344282876946568

Graph of the $Z$-function along the critical line