Properties

Label 2-3800-5.4-c1-0-48
Degree $2$
Conductor $3800$
Sign $0.894 - 0.447i$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.786i·3-s + 2.08i·7-s + 2.38·9-s + 1.29·11-s + 1.21i·13-s − 4.08i·17-s + 19-s − 1.63·21-s − 8.95i·23-s + 4.23i·27-s + 9.38·29-s + 1.02i·33-s + 2i·37-s − 0.954·39-s + 3.57·41-s + ⋯
L(s)  = 1  + 0.454i·3-s + 0.787i·7-s + 0.793·9-s + 0.391·11-s + 0.336i·13-s − 0.990i·17-s + 0.229·19-s − 0.357·21-s − 1.86i·23-s + 0.814i·27-s + 1.74·29-s + 0.177i·33-s + 0.328i·37-s − 0.152·39-s + 0.558·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.894 - 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $0.894 - 0.447i$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (3649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 0.894 - 0.447i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.208014910\)
\(L(\frac12)\) \(\approx\) \(2.208014910\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 0.786iT - 3T^{2} \)
7 \( 1 - 2.08iT - 7T^{2} \)
11 \( 1 - 1.29T + 11T^{2} \)
13 \( 1 - 1.21iT - 13T^{2} \)
17 \( 1 + 4.08iT - 17T^{2} \)
23 \( 1 + 8.95iT - 23T^{2} \)
29 \( 1 - 9.38T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 2iT - 37T^{2} \)
41 \( 1 - 3.57T + 41T^{2} \)
43 \( 1 - 7.72iT - 43T^{2} \)
47 \( 1 + 9.46iT - 47T^{2} \)
53 \( 1 + 11.9iT - 53T^{2} \)
59 \( 1 - 7.21T + 59T^{2} \)
61 \( 1 - 4.87T + 61T^{2} \)
67 \( 1 + 11.3iT - 67T^{2} \)
71 \( 1 + 9.02T + 71T^{2} \)
73 \( 1 - 5.65iT - 73T^{2} \)
79 \( 1 + 9.57T + 79T^{2} \)
83 \( 1 - 10.7iT - 83T^{2} \)
89 \( 1 + 11.0T + 89T^{2} \)
97 \( 1 - 8.59iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.670554858659869132898576959691, −7.950691918058362496913368710552, −6.78945406764239395562763070359, −6.59512088330501239084789334218, −5.39658808189692646976470639208, −4.72914277668505858496706884140, −4.10017520662649047483958188422, −2.98651311181765647836770982558, −2.20096637864972396959167303667, −0.876420074098641096445477902280, 0.958907072719369109721223486395, 1.64361203875561117139629037145, 2.93727563754224441665475772800, 3.94189198185279426399946004820, 4.43371693057417858843882396154, 5.61090900370663890151781576155, 6.25654451205843257710606816012, 7.28912623260240307443371042354, 7.39126292465483577564087881675, 8.359358978996834426948912760163

Graph of the $Z$-function along the critical line