L(s) = 1 | + 0.786i·3-s + 2.08i·7-s + 2.38·9-s + 1.29·11-s + 1.21i·13-s − 4.08i·17-s + 19-s − 1.63·21-s − 8.95i·23-s + 4.23i·27-s + 9.38·29-s + 1.02i·33-s + 2i·37-s − 0.954·39-s + 3.57·41-s + ⋯ |
L(s) = 1 | + 0.454i·3-s + 0.787i·7-s + 0.793·9-s + 0.391·11-s + 0.336i·13-s − 0.990i·17-s + 0.229·19-s − 0.357·21-s − 1.86i·23-s + 0.814i·27-s + 1.74·29-s + 0.177i·33-s + 0.328i·37-s − 0.152·39-s + 0.558·41-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.894−0.447i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(0.894−0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.894−0.447i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), 0.894−0.447i)
|
Particular Values
L(1) |
≈ |
2.208014910 |
L(21) |
≈ |
2.208014910 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1−0.786iT−3T2 |
| 7 | 1−2.08iT−7T2 |
| 11 | 1−1.29T+11T2 |
| 13 | 1−1.21iT−13T2 |
| 17 | 1+4.08iT−17T2 |
| 23 | 1+8.95iT−23T2 |
| 29 | 1−9.38T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−2iT−37T2 |
| 41 | 1−3.57T+41T2 |
| 43 | 1−7.72iT−43T2 |
| 47 | 1+9.46iT−47T2 |
| 53 | 1+11.9iT−53T2 |
| 59 | 1−7.21T+59T2 |
| 61 | 1−4.87T+61T2 |
| 67 | 1+11.3iT−67T2 |
| 71 | 1+9.02T+71T2 |
| 73 | 1−5.65iT−73T2 |
| 79 | 1+9.57T+79T2 |
| 83 | 1−10.7iT−83T2 |
| 89 | 1+11.0T+89T2 |
| 97 | 1−8.59iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.670554858659869132898576959691, −7.950691918058362496913368710552, −6.78945406764239395562763070359, −6.59512088330501239084789334218, −5.39658808189692646976470639208, −4.72914277668505858496706884140, −4.10017520662649047483958188422, −2.98651311181765647836770982558, −2.20096637864972396959167303667, −0.876420074098641096445477902280,
0.958907072719369109721223486395, 1.64361203875561117139629037145, 2.93727563754224441665475772800, 3.94189198185279426399946004820, 4.43371693057417858843882396154, 5.61090900370663890151781576155, 6.25654451205843257710606816012, 7.28912623260240307443371042354, 7.39126292465483577564087881675, 8.359358978996834426948912760163