L(s) = 1 | + 0.347i·3-s + 3.41i·7-s + 2.87·9-s + 2.41·11-s + 6.29i·13-s + 2.34i·17-s − 19-s − 1.18·21-s + 2.49i·23-s + 2.04i·27-s + 8.17·29-s − 2.77·31-s + 0.837i·33-s + 0.977i·37-s − 2.18·39-s + ⋯ |
L(s) = 1 | + 0.200i·3-s + 1.28i·7-s + 0.959·9-s + 0.727·11-s + 1.74i·13-s + 0.569i·17-s − 0.229·19-s − 0.258·21-s + 0.519i·23-s + 0.392i·27-s + 1.51·29-s − 0.498·31-s + 0.145i·33-s + 0.160i·37-s − 0.349·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.989329724 |
L(21) |
≈ |
1.989329724 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1−0.347iT−3T2 |
| 7 | 1−3.41iT−7T2 |
| 11 | 1−2.41T+11T2 |
| 13 | 1−6.29iT−13T2 |
| 17 | 1−2.34iT−17T2 |
| 23 | 1−2.49iT−23T2 |
| 29 | 1−8.17T+29T2 |
| 31 | 1+2.77T+31T2 |
| 37 | 1−0.977iT−37T2 |
| 41 | 1+3.49T+41T2 |
| 43 | 1+2.75iT−43T2 |
| 47 | 1+6.29iT−47T2 |
| 53 | 1−2.38iT−53T2 |
| 59 | 1+3.67T+59T2 |
| 61 | 1+12.7T+61T2 |
| 67 | 1+2.41iT−67T2 |
| 71 | 1−4.51T+71T2 |
| 73 | 1−1.81iT−73T2 |
| 79 | 1−5.04T+79T2 |
| 83 | 1+8.07iT−83T2 |
| 89 | 1−2.94T+89T2 |
| 97 | 1−3.09iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.942763432709325135908630866790, −8.154230513918400660110746195226, −7.07356802786268792572702282622, −6.55993858303700047524542450020, −5.85505911803266729765354787691, −4.82532741913189598420109175174, −4.24516276357880618264776846238, −3.36571280805303564520261683484, −2.12171625357295156442403259898, −1.50601740205259182684811960351,
0.62440370078852320082160612569, 1.35528109140582765790626247289, 2.76552139917970842833926793925, 3.65071992631756074727208803121, 4.42115863555398423969183010761, 5.10173832176468083521331896749, 6.27863755806285691844212619052, 6.79034462353144567564949155096, 7.62005158822670028803309901470, 7.975727670159443995970786172481