L(s) = 1 | + 1.83i·3-s + 1.83i·7-s − 0.364·9-s + 0.834·11-s − 2.19i·13-s − 2.56i·17-s + 19-s − 3.36·21-s + 0.635i·23-s + 4.83i·27-s + 9.62·29-s − 6.59·31-s + 1.53i·33-s + 5.23i·37-s + 4.03·39-s + ⋯ |
L(s) = 1 | + 1.05i·3-s + 0.693i·7-s − 0.121·9-s + 0.251·11-s − 0.609i·13-s − 0.621i·17-s + 0.229·19-s − 0.734·21-s + 0.132i·23-s + 0.930i·27-s + 1.78·29-s − 1.18·31-s + 0.266i·33-s + 0.860i·37-s + 0.645·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.447−0.894i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.447−0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.447−0.894i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.447−0.894i)
|
Particular Values
L(1) |
≈ |
1.861924536 |
L(21) |
≈ |
1.861924536 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1−1.83iT−3T2 |
| 7 | 1−1.83iT−7T2 |
| 11 | 1−0.834T+11T2 |
| 13 | 1+2.19iT−13T2 |
| 17 | 1+2.56iT−17T2 |
| 23 | 1−0.635iT−23T2 |
| 29 | 1−9.62T+29T2 |
| 31 | 1+6.59T+31T2 |
| 37 | 1−5.23iT−37T2 |
| 41 | 1−4.43T+41T2 |
| 43 | 1−7.06iT−43T2 |
| 47 | 1−9.86iT−47T2 |
| 53 | 1+0.668iT−53T2 |
| 59 | 1+0.397T+59T2 |
| 61 | 1−2.26T+61T2 |
| 67 | 1−2.43iT−67T2 |
| 71 | 1−4.12T+71T2 |
| 73 | 1−9.49iT−73T2 |
| 79 | 1+2.62T+79T2 |
| 83 | 1+10.8iT−83T2 |
| 89 | 1−5.97T+89T2 |
| 97 | 1+10.5iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.908489495403596880836706590520, −8.131338473279670910477379655470, −7.31569831751891874675111182029, −6.41100390149538798418151000899, −5.59010999425794326914001971437, −4.91178129373782704811902515446, −4.25921993980672892949589834630, −3.27285231820678467931274711395, −2.60205291545495832822974439348, −1.16512632568380846914502097557,
0.61399921636274559247474804549, 1.58310955005510152360629385083, 2.40862489649484407571771670361, 3.69211282472426697328912494887, 4.30421526036297072065023350168, 5.36970284990587462464783735011, 6.29000741570215409440299144727, 6.90597384204016418864381360902, 7.35531945665832192930781275913, 8.153247589893984042804014398983