L(s) = 1 | + 1.76i·3-s + 4.62i·7-s − 0.103·9-s − 5.52·11-s + 5.49i·13-s + 6.62i·17-s + 19-s − 8.14·21-s + 4.14i·23-s + 5.10i·27-s + 7.87·29-s + 1.25·31-s − 9.72i·33-s + 0.387i·37-s − 9.67·39-s + ⋯ |
L(s) = 1 | + 1.01i·3-s + 1.74i·7-s − 0.0343·9-s − 1.66·11-s + 1.52i·13-s + 1.60i·17-s + 0.229·19-s − 1.77·21-s + 0.865i·23-s + 0.982i·27-s + 1.46·29-s + 0.224·31-s − 1.69i·33-s + 0.0637i·37-s − 1.54·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.894+0.447i)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
30.3431 |
Root analytic conductor: |
5.50846 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(3649,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :1/2), −0.894+0.447i)
|
Particular Values
L(1) |
≈ |
1.530556371 |
L(21) |
≈ |
1.530556371 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1−1.76iT−3T2 |
| 7 | 1−4.62iT−7T2 |
| 11 | 1+5.52T+11T2 |
| 13 | 1−5.49iT−13T2 |
| 17 | 1−6.62iT−17T2 |
| 23 | 1−4.14iT−23T2 |
| 29 | 1−7.87T+29T2 |
| 31 | 1−1.25T+31T2 |
| 37 | 1−0.387iT−37T2 |
| 41 | 1−6.77T+41T2 |
| 43 | 1+10.9iT−43T2 |
| 47 | 1+1.72iT−47T2 |
| 53 | 1−1.49iT−53T2 |
| 59 | 1+0.626T+59T2 |
| 61 | 1−15.0T+61T2 |
| 67 | 1+5.22iT−67T2 |
| 71 | 1+11.0T+71T2 |
| 73 | 1+4.83iT−73T2 |
| 79 | 1−2.98T+79T2 |
| 83 | 1+2.74iT−83T2 |
| 89 | 1+4.27T+89T2 |
| 97 | 1−13.7iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.870331992407754769187663822878, −8.479531534791128939491059187719, −7.58999428143204628278591229663, −6.53895679688382680505264045220, −5.73310335969911330593803927912, −5.18080520841151886140763018977, −4.45010469299731146659966239112, −3.55775146505649939942628148591, −2.55965775432027961233084766395, −1.82820213190766681649474878966,
0.54236866150373580835468853725, 0.949178259634359153352993798689, 2.56754261758885739691919033778, 3.05364215897853056653497623342, 4.40923591793889645791041773897, 4.97342780122875455047696196600, 5.95484426972351864196793547063, 6.91259796970260692414781318447, 7.36718153166328054233246870416, 7.889893680909231456890231369774