L(s) = 1 | + (−0.342 − 0.939i)2-s + (−0.766 + 0.642i)4-s + (1.32 − 0.766i)7-s + (0.866 + 0.500i)8-s + (0.939 + 0.342i)9-s + (0.939 − 1.62i)11-s + (−0.984 + 0.173i)13-s + (−1.17 − 0.984i)14-s + (0.173 − 0.984i)16-s − i·18-s + (0.939 − 0.342i)19-s + (−1.85 − 0.326i)22-s + (−0.223 − 0.266i)23-s + (0.5 + 0.866i)26-s + (−0.524 + 1.43i)28-s + ⋯ |
L(s) = 1 | + (−0.342 − 0.939i)2-s + (−0.766 + 0.642i)4-s + (1.32 − 0.766i)7-s + (0.866 + 0.500i)8-s + (0.939 + 0.342i)9-s + (0.939 − 1.62i)11-s + (−0.984 + 0.173i)13-s + (−1.17 − 0.984i)14-s + (0.173 − 0.984i)16-s − i·18-s + (0.939 − 0.342i)19-s + (−1.85 − 0.326i)22-s + (−0.223 − 0.266i)23-s + (0.5 + 0.866i)26-s + (−0.524 + 1.43i)28-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.135+0.990i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.135+0.990i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.135+0.990i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(651,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), −0.135+0.990i)
|
Particular Values
L(21) |
≈ |
1.316358888 |
L(21) |
≈ |
1.316358888 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.342+0.939i)T |
| 5 | 1 |
| 19 | 1+(−0.939+0.342i)T |
good | 3 | 1+(−0.939−0.342i)T2 |
| 7 | 1+(−1.32+0.766i)T+(0.5−0.866i)T2 |
| 11 | 1+(−0.939+1.62i)T+(−0.5−0.866i)T2 |
| 13 | 1+(0.984−0.173i)T+(0.939−0.342i)T2 |
| 17 | 1+(0.766−0.642i)T2 |
| 23 | 1+(0.223+0.266i)T+(−0.173+0.984i)T2 |
| 29 | 1+(−0.766−0.642i)T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1−0.347iT−T2 |
| 41 | 1+(0.326−1.85i)T+(−0.939−0.342i)T2 |
| 43 | 1+(0.173+0.984i)T2 |
| 47 | 1+(0.342−0.939i)T+(−0.766−0.642i)T2 |
| 53 | 1+(0.984+1.17i)T+(−0.173+0.984i)T2 |
| 59 | 1+(0.939−0.342i)T+(0.766−0.642i)T2 |
| 61 | 1+(−0.173+0.984i)T2 |
| 67 | 1+(0.766+0.642i)T2 |
| 71 | 1+(−0.173−0.984i)T2 |
| 73 | 1+(−0.939−0.342i)T2 |
| 79 | 1+(0.939+0.342i)T2 |
| 83 | 1+(−0.5+0.866i)T2 |
| 89 | 1+(0.0603+0.342i)T+(−0.939+0.342i)T2 |
| 97 | 1+(0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.459424019596921319025735996074, −7.87551381704565072707940793792, −7.34185625306633107385137117118, −6.34433816117544612258188447220, −5.01078077269123625308352239872, −4.63804786731843626211659055779, −3.78629895476868934294499498766, −2.91951261642478425809591809181, −1.65871990825826427361377317461, −1.02978445708095806744248117483,
1.44429319361481778165190947211, 2.04905647114621949797222304320, 3.81961640945775764132732532941, 4.65504221496309316328198481292, 5.05202578907980099472286711061, 5.92465822453296900485343627978, 6.97518770134183356462937722738, 7.36049942651516457237368010889, 7.932739823396552466772707135940, 8.899817632867806001294316819252