L(s) = 1 | + (−0.382 − 0.923i)2-s − 1.84·3-s + (−0.707 + 0.707i)4-s + (0.707 + 1.70i)6-s + (0.923 + 0.382i)8-s + 2.41·9-s − 1.41i·11-s + (1.30 − 1.30i)12-s − 0.765·13-s − i·16-s + (−0.923 − 2.23i)18-s + i·19-s + (−1.30 + 0.541i)22-s + (−1.70 − 0.707i)24-s + (0.292 + 0.707i)26-s − 2.61·27-s + ⋯ |
L(s) = 1 | + (−0.382 − 0.923i)2-s − 1.84·3-s + (−0.707 + 0.707i)4-s + (0.707 + 1.70i)6-s + (0.923 + 0.382i)8-s + 2.41·9-s − 1.41i·11-s + (1.30 − 1.30i)12-s − 0.765·13-s − i·16-s + (−0.923 − 2.23i)18-s + i·19-s + (−1.30 + 0.541i)22-s + (−1.70 − 0.707i)24-s + (0.292 + 0.707i)26-s − 2.61·27-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.382+0.923i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.382+0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.382+0.923i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(1101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), −0.382+0.923i)
|
Particular Values
L(21) |
≈ |
0.4133086609 |
L(21) |
≈ |
0.4133086609 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.382+0.923i)T |
| 5 | 1 |
| 19 | 1−iT |
good | 3 | 1+1.84T+T2 |
| 7 | 1+T2 |
| 11 | 1+1.41iT−T2 |
| 13 | 1+0.765T+T2 |
| 17 | 1+T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1−1.84T+T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+T2 |
| 53 | 1−1.84T+T2 |
| 59 | 1+T2 |
| 61 | 1−1.41iT−T2 |
| 67 | 1+0.765T+T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−0.765iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.504655729019005346217703513311, −7.72809254991887763441794896864, −6.95838161732376364848602245355, −5.94515421005170350072166393019, −5.55287522359733585113632507757, −4.59566372591461259796922387648, −3.94749060311967316201114333561, −2.83156144406256263021252708944, −1.50148377331116799535529941165, −0.51044433845691587461890953830,
0.869058986565000773675567928839, 2.13493783075818219627071734273, 4.12349842887505980379877002231, 4.81784781246868365437143720671, 5.11918043372341302107863729853, 6.09997269660975271167861319084, 6.63394738995838425156368406983, 7.30222363296341418958668586178, 7.72817356946768780319933578032, 9.032499894065345255728359104420