L(s) = 1 | + (−0.382 − 0.923i)2-s − 1.84·3-s + (−0.707 + 0.707i)4-s + (0.707 + 1.70i)6-s + (0.923 + 0.382i)8-s + 2.41·9-s − 1.41i·11-s + (1.30 − 1.30i)12-s − 0.765·13-s − i·16-s + (−0.923 − 2.23i)18-s + i·19-s + (−1.30 + 0.541i)22-s + (−1.70 − 0.707i)24-s + (0.292 + 0.707i)26-s − 2.61·27-s + ⋯ |
L(s) = 1 | + (−0.382 − 0.923i)2-s − 1.84·3-s + (−0.707 + 0.707i)4-s + (0.707 + 1.70i)6-s + (0.923 + 0.382i)8-s + 2.41·9-s − 1.41i·11-s + (1.30 − 1.30i)12-s − 0.765·13-s − i·16-s + (−0.923 − 2.23i)18-s + i·19-s + (−1.30 + 0.541i)22-s + (−1.70 − 0.707i)24-s + (0.292 + 0.707i)26-s − 2.61·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4133086609\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4133086609\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.382 + 0.923i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 - iT \) |
good | 3 | \( 1 + 1.84T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 + 0.765T + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - 1.84T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - 1.84T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 1.41iT - T^{2} \) |
| 67 | \( 1 + 0.765T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 0.765iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.504655729019005346217703513311, −7.72809254991887763441794896864, −6.95838161732376364848602245355, −5.94515421005170350072166393019, −5.55287522359733585113632507757, −4.59566372591461259796922387648, −3.94749060311967316201114333561, −2.83156144406256263021252708944, −1.50148377331116799535529941165, −0.51044433845691587461890953830,
0.869058986565000773675567928839, 2.13493783075818219627071734273, 4.12349842887505980379877002231, 4.81784781246868365437143720671, 5.11918043372341302107863729853, 6.09997269660975271167861319084, 6.63394738995838425156368406983, 7.30222363296341418958668586178, 7.72817356946768780319933578032, 9.032499894065345255728359104420