Properties

Label 2-3800-152.37-c0-0-12
Degree $2$
Conductor $3800$
Sign $1$
Analytic cond. $1.89644$
Root an. cond. $1.37711$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 1.87·3-s + 4-s − 1.87·6-s + 1.53·7-s + 8-s + 2.53·9-s − 1.87·12-s + 0.347·13-s + 1.53·14-s + 16-s + 0.347·17-s + 2.53·18-s + 19-s − 2.87·21-s − 1.87·23-s − 1.87·24-s + 0.347·26-s − 2.87·27-s + 1.53·28-s + 0.347·29-s + 32-s + 0.347·34-s + 2.53·36-s − 37-s + 38-s − 0.652·39-s + ⋯
L(s)  = 1  + 2-s − 1.87·3-s + 4-s − 1.87·6-s + 1.53·7-s + 8-s + 2.53·9-s − 1.87·12-s + 0.347·13-s + 1.53·14-s + 16-s + 0.347·17-s + 2.53·18-s + 19-s − 2.87·21-s − 1.87·23-s − 1.87·24-s + 0.347·26-s − 2.87·27-s + 1.53·28-s + 0.347·29-s + 32-s + 0.347·34-s + 2.53·36-s − 37-s + 38-s − 0.652·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1.89644\)
Root analytic conductor: \(1.37711\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3800} (1101, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.769037272\)
\(L(\frac12)\) \(\approx\) \(1.769037272\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 1.87T + T^{2} \)
7 \( 1 - 1.53T + T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - 0.347T + T^{2} \)
17 \( 1 - 0.347T + T^{2} \)
23 \( 1 + 1.87T + T^{2} \)
29 \( 1 - 0.347T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + T + T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 + T + T^{2} \)
53 \( 1 - 1.53T + T^{2} \)
59 \( 1 + 1.87T + T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.53T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + 1.87T + T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.351353760629594578274853851324, −7.60832019804577456202142826120, −7.02678264425828841444314941909, −6.06449188826151788193384752646, −5.66455582646833053538356700807, −4.95200572745320401436093592935, −4.47188360610106782843205787481, −3.60587576232893532899609522099, −1.95667818261153896396445420352, −1.22480060681873618762671818129, 1.22480060681873618762671818129, 1.95667818261153896396445420352, 3.60587576232893532899609522099, 4.47188360610106782843205787481, 4.95200572745320401436093592935, 5.66455582646833053538356700807, 6.06449188826151788193384752646, 7.02678264425828841444314941909, 7.60832019804577456202142826120, 8.351353760629594578274853851324

Graph of the $Z$-function along the critical line