L(s) = 1 | + 2-s − 1.87·3-s + 4-s − 1.87·6-s + 1.53·7-s + 8-s + 2.53·9-s − 1.87·12-s + 0.347·13-s + 1.53·14-s + 16-s + 0.347·17-s + 2.53·18-s + 19-s − 2.87·21-s − 1.87·23-s − 1.87·24-s + 0.347·26-s − 2.87·27-s + 1.53·28-s + 0.347·29-s + 32-s + 0.347·34-s + 2.53·36-s − 37-s + 38-s − 0.652·39-s + ⋯ |
L(s) = 1 | + 2-s − 1.87·3-s + 4-s − 1.87·6-s + 1.53·7-s + 8-s + 2.53·9-s − 1.87·12-s + 0.347·13-s + 1.53·14-s + 16-s + 0.347·17-s + 2.53·18-s + 19-s − 2.87·21-s − 1.87·23-s − 1.87·24-s + 0.347·26-s − 2.87·27-s + 1.53·28-s + 0.347·29-s + 32-s + 0.347·34-s + 2.53·36-s − 37-s + 38-s − 0.652·39-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
1
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(1101,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), 1)
|
Particular Values
L(21) |
≈ |
1.769037272 |
L(21) |
≈ |
1.769037272 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+1.87T+T2 |
| 7 | 1−1.53T+T2 |
| 11 | 1−T2 |
| 13 | 1−0.347T+T2 |
| 17 | 1−0.347T+T2 |
| 23 | 1+1.87T+T2 |
| 29 | 1−0.347T+T2 |
| 31 | 1−T2 |
| 37 | 1+T+T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+T+T2 |
| 53 | 1−1.53T+T2 |
| 59 | 1+1.87T+T2 |
| 61 | 1−T2 |
| 67 | 1−1.53T+T2 |
| 71 | 1−T2 |
| 73 | 1+1.87T+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.351353760629594578274853851324, −7.60832019804577456202142826120, −7.02678264425828841444314941909, −6.06449188826151788193384752646, −5.66455582646833053538356700807, −4.95200572745320401436093592935, −4.47188360610106782843205787481, −3.60587576232893532899609522099, −1.95667818261153896396445420352, −1.22480060681873618762671818129,
1.22480060681873618762671818129, 1.95667818261153896396445420352, 3.60587576232893532899609522099, 4.47188360610106782843205787481, 4.95200572745320401436093592935, 5.66455582646833053538356700807, 6.06449188826151788193384752646, 7.02678264425828841444314941909, 7.60832019804577456202142826120, 8.351353760629594578274853851324