L(s) = 1 | + (0.923 + 0.382i)2-s − 0.765·3-s + (0.707 + 0.707i)4-s + (−0.707 − 0.292i)6-s + (0.382 + 0.923i)8-s − 0.414·9-s − 1.41i·11-s + (−0.541 − 0.541i)12-s + 1.84·13-s + i·16-s + (−0.382 − 0.158i)18-s − i·19-s + (0.541 − 1.30i)22-s + (−0.292 − 0.707i)24-s + (1.70 + 0.707i)26-s + 1.08·27-s + ⋯ |
L(s) = 1 | + (0.923 + 0.382i)2-s − 0.765·3-s + (0.707 + 0.707i)4-s + (−0.707 − 0.292i)6-s + (0.382 + 0.923i)8-s − 0.414·9-s − 1.41i·11-s + (−0.541 − 0.541i)12-s + 1.84·13-s + i·16-s + (−0.382 − 0.158i)18-s − i·19-s + (0.541 − 1.30i)22-s + (−0.292 − 0.707i)24-s + (1.70 + 0.707i)26-s + 1.08·27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 - 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.851833756\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.851833756\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 - 0.382i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + iT \) |
good | 3 | \( 1 + 0.765T + T^{2} \) |
| 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 - 1.84T + T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - 0.765T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - 0.765T + T^{2} \) |
| 59 | \( 1 + T^{2} \) |
| 61 | \( 1 - 1.41iT - T^{2} \) |
| 67 | \( 1 - 1.84T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - 1.84iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.475708389463429544358323057732, −8.065435389225415936691970083255, −6.83577293307994652504774740958, −6.32336242781281004614150650287, −5.74740494317913117737195227010, −5.21899487176826105519053680157, −4.16808109241270629287230093756, −3.41459005076754594451332044936, −2.64547138984168035875865359867, −1.05240540401779602092582256845,
1.21349285112509968177632613427, 2.16452128086605089260542088091, 3.34796517526064993247471554112, 4.06303022128499761815118834342, 4.88255402410686897452378287105, 5.62159947276026298022484212294, 6.25094567046066021880446425599, 6.76710714686817530044982694043, 7.77728386759656982788556856705, 8.592349117201555057430490976925