L(s) = 1 | + (0.923 + 0.382i)2-s − 0.765·3-s + (0.707 + 0.707i)4-s + (−0.707 − 0.292i)6-s + (0.382 + 0.923i)8-s − 0.414·9-s − 1.41i·11-s + (−0.541 − 0.541i)12-s + 1.84·13-s + i·16-s + (−0.382 − 0.158i)18-s − i·19-s + (0.541 − 1.30i)22-s + (−0.292 − 0.707i)24-s + (1.70 + 0.707i)26-s + 1.08·27-s + ⋯ |
L(s) = 1 | + (0.923 + 0.382i)2-s − 0.765·3-s + (0.707 + 0.707i)4-s + (−0.707 − 0.292i)6-s + (0.382 + 0.923i)8-s − 0.414·9-s − 1.41i·11-s + (−0.541 − 0.541i)12-s + 1.84·13-s + i·16-s + (−0.382 − 0.158i)18-s − i·19-s + (0.541 − 1.30i)22-s + (−0.292 − 0.707i)24-s + (1.70 + 0.707i)26-s + 1.08·27-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.923−0.382i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.923−0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.923−0.382i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(1101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), 0.923−0.382i)
|
Particular Values
L(21) |
≈ |
1.851833756 |
L(21) |
≈ |
1.851833756 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.923−0.382i)T |
| 5 | 1 |
| 19 | 1+iT |
good | 3 | 1+0.765T+T2 |
| 7 | 1+T2 |
| 11 | 1+1.41iT−T2 |
| 13 | 1−1.84T+T2 |
| 17 | 1+T2 |
| 23 | 1+T2 |
| 29 | 1+T2 |
| 31 | 1−T2 |
| 37 | 1−0.765T+T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1+T2 |
| 53 | 1−0.765T+T2 |
| 59 | 1+T2 |
| 61 | 1−1.41iT−T2 |
| 67 | 1−1.84T+T2 |
| 71 | 1−T2 |
| 73 | 1+T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1−T2 |
| 97 | 1−1.84iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.475708389463429544358323057732, −8.065435389225415936691970083255, −6.83577293307994652504774740958, −6.32336242781281004614150650287, −5.74740494317913117737195227010, −5.21899487176826105519053680157, −4.16808109241270629287230093756, −3.41459005076754594451332044936, −2.64547138984168035875865359867, −1.05240540401779602092582256845,
1.21349285112509968177632613427, 2.16452128086605089260542088091, 3.34796517526064993247471554112, 4.06303022128499761815118834342, 4.88255402410686897452378287105, 5.62159947276026298022484212294, 6.25094567046066021880446425599, 6.76710714686817530044982694043, 7.77728386759656982788556856705, 8.592349117201555057430490976925