L(s) = 1 | + (0.766 − 0.642i)2-s + (−0.326 − 0.118i)3-s + (0.173 − 0.984i)4-s + (−0.326 + 0.118i)6-s + (−0.500 − 0.866i)8-s + (−0.673 − 0.565i)9-s + (−0.173 − 0.300i)11-s + (−0.173 + 0.300i)12-s + (−0.939 − 0.342i)16-s + (1.53 − 1.28i)17-s − 0.879·18-s + (−0.939 + 0.342i)19-s + (−0.326 − 0.118i)22-s + (0.0603 + 0.342i)24-s + (0.326 + 0.565i)27-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (−0.326 − 0.118i)3-s + (0.173 − 0.984i)4-s + (−0.326 + 0.118i)6-s + (−0.500 − 0.866i)8-s + (−0.673 − 0.565i)9-s + (−0.173 − 0.300i)11-s + (−0.173 + 0.300i)12-s + (−0.939 − 0.342i)16-s + (1.53 − 1.28i)17-s − 0.879·18-s + (−0.939 + 0.342i)19-s + (−0.326 − 0.118i)22-s + (0.0603 + 0.342i)24-s + (0.326 + 0.565i)27-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.944 + 0.327i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.334475423\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.334475423\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.766 + 0.642i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (0.939 - 0.342i)T \) |
good | 3 | \( 1 + (0.326 + 0.118i)T + (0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (-1.53 + 1.28i)T + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-1.17 - 0.984i)T + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.939 + 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.266 + 0.223i)T + (0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.504005184735619740129174072947, −7.42199575729730029518229857722, −6.68209315383449728255707631904, −5.85309521639287561963078924282, −5.40358468396883439418968532947, −4.57902630061509221961705527343, −3.47054503241654298779352632801, −3.03076114885464023737334460883, −1.85470866296079420774986080170, −0.58391819050418152457507952929,
1.84220947526851715491844553185, 2.93756536223408448999164366605, 3.70621111949113716651508636461, 4.71206751077087603506419840899, 5.20691098118497750988398324286, 6.11470862591100530793225752342, 6.45960219681886280507363385454, 7.63110860840224826233933024989, 8.069387725411025898371851100098, 8.668514962755325747850032143370