L(s) = 1 | + (0.766 − 0.642i)2-s + (−0.326 − 0.118i)3-s + (0.173 − 0.984i)4-s + (−0.326 + 0.118i)6-s + (−0.500 − 0.866i)8-s + (−0.673 − 0.565i)9-s + (−0.173 − 0.300i)11-s + (−0.173 + 0.300i)12-s + (−0.939 − 0.342i)16-s + (1.53 − 1.28i)17-s − 0.879·18-s + (−0.939 + 0.342i)19-s + (−0.326 − 0.118i)22-s + (0.0603 + 0.342i)24-s + (0.326 + 0.565i)27-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)2-s + (−0.326 − 0.118i)3-s + (0.173 − 0.984i)4-s + (−0.326 + 0.118i)6-s + (−0.500 − 0.866i)8-s + (−0.673 − 0.565i)9-s + (−0.173 − 0.300i)11-s + (−0.173 + 0.300i)12-s + (−0.939 − 0.342i)16-s + (1.53 − 1.28i)17-s − 0.879·18-s + (−0.939 + 0.342i)19-s + (−0.326 − 0.118i)22-s + (0.0603 + 0.342i)24-s + (0.326 + 0.565i)27-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.944+0.327i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(−0.944+0.327i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
−0.944+0.327i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(1051,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), −0.944+0.327i)
|
Particular Values
L(21) |
≈ |
1.334475423 |
L(21) |
≈ |
1.334475423 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.766+0.642i)T |
| 5 | 1 |
| 19 | 1+(0.939−0.342i)T |
good | 3 | 1+(0.326+0.118i)T+(0.766+0.642i)T2 |
| 7 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.173+0.300i)T+(−0.5+0.866i)T2 |
| 13 | 1+(−0.766+0.642i)T2 |
| 17 | 1+(−1.53+1.28i)T+(0.173−0.984i)T2 |
| 23 | 1+(0.939+0.342i)T2 |
| 29 | 1+(−0.173−0.984i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 43 | 1+(0.173+0.984i)T+(−0.939+0.342i)T2 |
| 47 | 1+(−0.173−0.984i)T2 |
| 53 | 1+(0.939+0.342i)T2 |
| 59 | 1+(1.43−1.20i)T+(0.173−0.984i)T2 |
| 61 | 1+(0.939+0.342i)T2 |
| 67 | 1+(−1.17−0.984i)T+(0.173+0.984i)T2 |
| 71 | 1+(0.939−0.342i)T2 |
| 73 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 79 | 1+(−0.766−0.642i)T2 |
| 83 | 1+(−0.939+1.62i)T+(−0.5−0.866i)T2 |
| 89 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
| 97 | 1+(−0.266+0.223i)T+(0.173−0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.504005184735619740129174072947, −7.42199575729730029518229857722, −6.68209315383449728255707631904, −5.85309521639287561963078924282, −5.40358468396883439418968532947, −4.57902630061509221961705527343, −3.47054503241654298779352632801, −3.03076114885464023737334460883, −1.85470866296079420774986080170, −0.58391819050418152457507952929,
1.84220947526851715491844553185, 2.93756536223408448999164366605, 3.70621111949113716651508636461, 4.71206751077087603506419840899, 5.20691098118497750988398324286, 6.11470862591100530793225752342, 6.45960219681886280507363385454, 7.63110860840224826233933024989, 8.069387725411025898371851100098, 8.668514962755325747850032143370