L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.173 + 0.984i)4-s + (−0.300 − 0.173i)7-s + (−0.866 + 0.500i)8-s + (−0.766 − 0.642i)9-s + (−0.766 − 1.32i)11-s + (−0.342 − 0.939i)13-s + (−0.0603 − 0.342i)14-s + (−0.939 − 0.342i)16-s − i·18-s + (−0.766 + 0.642i)19-s + (0.524 − 1.43i)22-s + (1.85 + 0.326i)23-s + (0.5 − 0.866i)26-s + (0.223 − 0.266i)28-s + ⋯ |
L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.173 + 0.984i)4-s + (−0.300 − 0.173i)7-s + (−0.866 + 0.500i)8-s + (−0.766 − 0.642i)9-s + (−0.766 − 1.32i)11-s + (−0.342 − 0.939i)13-s + (−0.0603 − 0.342i)14-s + (−0.939 − 0.342i)16-s − i·18-s + (−0.766 + 0.642i)19-s + (0.524 − 1.43i)22-s + (1.85 + 0.326i)23-s + (0.5 − 0.866i)26-s + (0.223 − 0.266i)28-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.631+0.775i)Λ(1−s)
Λ(s)=(=(3800s/2ΓC(s)L(s)(0.631+0.775i)Λ(1−s)
Degree: |
2 |
Conductor: |
3800
= 23⋅52⋅19
|
Sign: |
0.631+0.775i
|
Analytic conductor: |
1.89644 |
Root analytic conductor: |
1.37711 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3800(1051,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3800, ( :0), 0.631+0.775i)
|
Particular Values
L(21) |
≈ |
0.9377856044 |
L(21) |
≈ |
0.9377856044 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.642−0.766i)T |
| 5 | 1 |
| 19 | 1+(0.766−0.642i)T |
good | 3 | 1+(0.766+0.642i)T2 |
| 7 | 1+(0.300+0.173i)T+(0.5+0.866i)T2 |
| 11 | 1+(0.766+1.32i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.342+0.939i)T+(−0.766+0.642i)T2 |
| 17 | 1+(0.173−0.984i)T2 |
| 23 | 1+(−1.85−0.326i)T+(0.939+0.342i)T2 |
| 29 | 1+(−0.173−0.984i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1+1.87iT−T2 |
| 41 | 1+(1.43+0.524i)T+(0.766+0.642i)T2 |
| 43 | 1+(−0.939+0.342i)T2 |
| 47 | 1+(−0.642+0.766i)T+(−0.173−0.984i)T2 |
| 53 | 1+(0.342+0.0603i)T+(0.939+0.342i)T2 |
| 59 | 1+(−0.766+0.642i)T+(0.173−0.984i)T2 |
| 61 | 1+(0.939+0.342i)T2 |
| 67 | 1+(0.173+0.984i)T2 |
| 71 | 1+(0.939−0.342i)T2 |
| 73 | 1+(0.766+0.642i)T2 |
| 79 | 1+(−0.766−0.642i)T2 |
| 83 | 1+(−0.5−0.866i)T2 |
| 89 | 1+(1.76−0.642i)T+(0.766−0.642i)T2 |
| 97 | 1+(0.173−0.984i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.582147509076677513358079958195, −7.78178078692251458932098166135, −7.00190507726258487576797954224, −6.27023452065248572059846487575, −5.46224495886188465461611485333, −5.22519275327084068249784743296, −3.79298212839026636309648412943, −3.30388673604034837825825341271, −2.54552651539510379931434189431, −0.40174486317415070186052478663,
1.60945670089102455026612486123, 2.57739145307573726846400788545, 3.01065276980924183137763759822, 4.49312287776269092158751599470, 4.75206403663292254351588920914, 5.52131506483257804116002297064, 6.61381911442416819447268218600, 7.02104523859212297588926483856, 8.178732855035040725091151812833, 8.967879113576591457841747486419