L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.173 + 0.984i)4-s + (−0.300 − 0.173i)7-s + (−0.866 + 0.500i)8-s + (−0.766 − 0.642i)9-s + (−0.766 − 1.32i)11-s + (−0.342 − 0.939i)13-s + (−0.0603 − 0.342i)14-s + (−0.939 − 0.342i)16-s − i·18-s + (−0.766 + 0.642i)19-s + (0.524 − 1.43i)22-s + (1.85 + 0.326i)23-s + (0.5 − 0.866i)26-s + (0.223 − 0.266i)28-s + ⋯ |
L(s) = 1 | + (0.642 + 0.766i)2-s + (−0.173 + 0.984i)4-s + (−0.300 − 0.173i)7-s + (−0.866 + 0.500i)8-s + (−0.766 − 0.642i)9-s + (−0.766 − 1.32i)11-s + (−0.342 − 0.939i)13-s + (−0.0603 − 0.342i)14-s + (−0.939 − 0.342i)16-s − i·18-s + (−0.766 + 0.642i)19-s + (0.524 − 1.43i)22-s + (1.85 + 0.326i)23-s + (0.5 − 0.866i)26-s + (0.223 − 0.266i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.631 + 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.631 + 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9377856044\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9377856044\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.642 - 0.766i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (0.766 - 0.642i)T \) |
good | 3 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 7 | \( 1 + (0.300 + 0.173i)T + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.342 + 0.939i)T + (-0.766 + 0.642i)T^{2} \) |
| 17 | \( 1 + (0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (-1.85 - 0.326i)T + (0.939 + 0.342i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 1.87iT - T^{2} \) |
| 41 | \( 1 + (1.43 + 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (-0.642 + 0.766i)T + (-0.173 - 0.984i)T^{2} \) |
| 53 | \( 1 + (0.342 + 0.0603i)T + (0.939 + 0.342i)T^{2} \) |
| 59 | \( 1 + (-0.766 + 0.642i)T + (0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (1.76 - 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.582147509076677513358079958195, −7.78178078692251458932098166135, −7.00190507726258487576797954224, −6.27023452065248572059846487575, −5.46224495886188465461611485333, −5.22519275327084068249784743296, −3.79298212839026636309648412943, −3.30388673604034837825825341271, −2.54552651539510379931434189431, −0.40174486317415070186052478663,
1.60945670089102455026612486123, 2.57739145307573726846400788545, 3.01065276980924183137763759822, 4.49312287776269092158751599470, 4.75206403663292254351588920914, 5.52131506483257804116002297064, 6.61381911442416819447268218600, 7.02104523859212297588926483856, 8.178732855035040725091151812833, 8.967879113576591457841747486419