L(s) = 1 | + (0.984 + 0.173i)2-s + (0.939 + 0.342i)4-s + (−1.62 + 0.939i)7-s + (0.866 + 0.5i)8-s + (−0.173 − 0.984i)9-s + (−0.173 + 0.300i)11-s + (0.642 + 0.766i)13-s + (−1.76 + 0.642i)14-s + (0.766 + 0.642i)16-s − 0.999i·18-s + (−0.173 + 0.984i)19-s + (−0.223 + 0.266i)22-s + (−0.524 + 1.43i)23-s + (0.5 + 0.866i)26-s + (−1.85 + 0.326i)28-s + ⋯ |
L(s) = 1 | + (0.984 + 0.173i)2-s + (0.939 + 0.342i)4-s + (−1.62 + 0.939i)7-s + (0.866 + 0.5i)8-s + (−0.173 − 0.984i)9-s + (−0.173 + 0.300i)11-s + (0.642 + 0.766i)13-s + (−1.76 + 0.642i)14-s + (0.766 + 0.642i)16-s − 0.999i·18-s + (−0.173 + 0.984i)19-s + (−0.223 + 0.266i)22-s + (−0.524 + 1.43i)23-s + (0.5 + 0.866i)26-s + (−1.85 + 0.326i)28-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0158 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0158 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.896470727\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.896470727\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.984 - 0.173i)T \) |
| 5 | \( 1 \) |
| 19 | \( 1 + (0.173 - 0.984i)T \) |
good | 3 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 7 | \( 1 + (1.62 - 0.939i)T + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.642 - 0.766i)T + (-0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (0.524 - 1.43i)T + (-0.766 - 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 1.53iT - T^{2} \) |
| 41 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.984 + 0.173i)T + (0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.642 + 1.76i)T + (-0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.173 + 0.984i)T + (-0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (1.17 - 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.835804266530214422716900350144, −8.092098597735882409760399676329, −6.96546758081173651114206750943, −6.50524459964501095070624854249, −5.91800571150585852249597302897, −5.34841066461703795745045914192, −4.00480182367781979592688722360, −3.55598764224215274574476419270, −2.80366746769176514471843634747, −1.71637813427509189513980870520,
0.74751150436094506008877153765, 2.44514766464527012564157558600, 2.97341384824334508680579613313, 3.94143699379803011195751617190, 4.48901229309227030261335219642, 5.67897811625941526547607156317, 6.04239541180613775939514651349, 6.99351047441964366713600417438, 7.41910970068768186657221465644, 8.406013416656313386893228889050