Properties

Label 2-3800-1.1-c1-0-73
Degree $2$
Conductor $3800$
Sign $-1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.59·3-s − 1.66·7-s − 0.463·9-s + 5.56·11-s − 6.31·13-s − 4.12·17-s + 19-s − 2.64·21-s + 1.82·23-s − 5.51·27-s − 4.08·29-s + 6.61·31-s + 8.86·33-s − 9.66·37-s − 10.0·39-s − 4.61·41-s + 3.75·43-s + 3.85·47-s − 4.23·49-s − 6.56·51-s − 5.24·53-s + 1.59·57-s − 11.5·59-s + 8.02·61-s + 0.770·63-s − 0.155·67-s + 2.90·69-s + ⋯
L(s)  = 1  + 0.919·3-s − 0.628·7-s − 0.154·9-s + 1.67·11-s − 1.75·13-s − 0.999·17-s + 0.229·19-s − 0.577·21-s + 0.380·23-s − 1.06·27-s − 0.759·29-s + 1.18·31-s + 1.54·33-s − 1.58·37-s − 1.61·39-s − 0.720·41-s + 0.572·43-s + 0.562·47-s − 0.604·49-s − 0.919·51-s − 0.720·53-s + 0.210·57-s − 1.50·59-s + 1.02·61-s + 0.0970·63-s − 0.0189·67-s + 0.349·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 1.59T + 3T^{2} \)
7 \( 1 + 1.66T + 7T^{2} \)
11 \( 1 - 5.56T + 11T^{2} \)
13 \( 1 + 6.31T + 13T^{2} \)
17 \( 1 + 4.12T + 17T^{2} \)
23 \( 1 - 1.82T + 23T^{2} \)
29 \( 1 + 4.08T + 29T^{2} \)
31 \( 1 - 6.61T + 31T^{2} \)
37 \( 1 + 9.66T + 37T^{2} \)
41 \( 1 + 4.61T + 41T^{2} \)
43 \( 1 - 3.75T + 43T^{2} \)
47 \( 1 - 3.85T + 47T^{2} \)
53 \( 1 + 5.24T + 53T^{2} \)
59 \( 1 + 11.5T + 59T^{2} \)
61 \( 1 - 8.02T + 61T^{2} \)
67 \( 1 + 0.155T + 67T^{2} \)
71 \( 1 + 12.1T + 71T^{2} \)
73 \( 1 + 0.795T + 73T^{2} \)
79 \( 1 + 7.18T + 79T^{2} \)
83 \( 1 + 5.88T + 83T^{2} \)
89 \( 1 - 18.5T + 89T^{2} \)
97 \( 1 + 2.77T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.262434657392541449887795408428, −7.30055714268107584107407746459, −6.83366008486754876346150341082, −6.04803533508830546684026510723, −4.97222295852680425058959755904, −4.16564523352090037701538168768, −3.32255847924512262847848311483, −2.60743172684876293927640633048, −1.66661355496970272230647656251, 0, 1.66661355496970272230647656251, 2.60743172684876293927640633048, 3.32255847924512262847848311483, 4.16564523352090037701538168768, 4.97222295852680425058959755904, 6.04803533508830546684026510723, 6.83366008486754876346150341082, 7.30055714268107584107407746459, 8.262434657392541449887795408428

Graph of the $Z$-function along the critical line