L(s) = 1 | + 0.185·3-s + 4.45·7-s − 2.96·9-s + 2.64·11-s − 1.30·13-s + 3.51·17-s − 19-s + 0.826·21-s + 6.52·23-s − 1.10·27-s − 5.20·29-s + 10.8·31-s + 0.490·33-s − 2.04·37-s − 0.241·39-s − 3.80·41-s − 4.77·43-s − 1.49·47-s + 12.8·49-s + 0.652·51-s − 0.225·53-s − 0.185·57-s − 2.86·59-s − 6.31·61-s − 13.2·63-s + 13.1·67-s + 1.21·69-s + ⋯ |
L(s) = 1 | + 0.107·3-s + 1.68·7-s − 0.988·9-s + 0.797·11-s − 0.360·13-s + 0.853·17-s − 0.229·19-s + 0.180·21-s + 1.36·23-s − 0.212·27-s − 0.967·29-s + 1.94·31-s + 0.0854·33-s − 0.336·37-s − 0.0386·39-s − 0.593·41-s − 0.727·43-s − 0.217·47-s + 1.83·49-s + 0.0913·51-s − 0.0309·53-s − 0.0245·57-s − 0.372·59-s − 0.808·61-s − 1.66·63-s + 1.61·67-s + 0.145·69-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.484218993 |
L(21) |
≈ |
2.484218993 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1−0.185T+3T2 |
| 7 | 1−4.45T+7T2 |
| 11 | 1−2.64T+11T2 |
| 13 | 1+1.30T+13T2 |
| 17 | 1−3.51T+17T2 |
| 23 | 1−6.52T+23T2 |
| 29 | 1+5.20T+29T2 |
| 31 | 1−10.8T+31T2 |
| 37 | 1+2.04T+37T2 |
| 41 | 1+3.80T+41T2 |
| 43 | 1+4.77T+43T2 |
| 47 | 1+1.49T+47T2 |
| 53 | 1+0.225T+53T2 |
| 59 | 1+2.86T+59T2 |
| 61 | 1+6.31T+61T2 |
| 67 | 1−13.1T+67T2 |
| 71 | 1−12.3T+71T2 |
| 73 | 1−5.42T+73T2 |
| 79 | 1−14.9T+79T2 |
| 83 | 1+3.84T+83T2 |
| 89 | 1−1.67T+89T2 |
| 97 | 1+9.48T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.272624986136945238379650887192, −8.063842296408725867187989584992, −7.08185461298803165917526987803, −6.29206888048647638496356029544, −5.23525721337534450687527097188, −4.95257414709823673884497690017, −3.88847013151906623993700021614, −2.94307679812171951738207131986, −1.92945799514007907577466530205, −0.965009873455249558456152894215,
0.965009873455249558456152894215, 1.92945799514007907577466530205, 2.94307679812171951738207131986, 3.88847013151906623993700021614, 4.95257414709823673884497690017, 5.23525721337534450687527097188, 6.29206888048647638496356029544, 7.08185461298803165917526987803, 8.063842296408725867187989584992, 8.272624986136945238379650887192