L(s) = 1 | − 0.486·3-s − 3.63·7-s − 2.76·9-s − 2.79·11-s − 2.86·13-s − 1.17·17-s + 19-s + 1.76·21-s + 0.617·23-s + 2.80·27-s − 4.96·29-s + 0.745·31-s + 1.36·33-s − 8.23·37-s + 1.39·39-s + 9.98·41-s − 10.4·43-s − 5.07·47-s + 6.19·49-s + 0.571·51-s + 7.45·53-s − 0.486·57-s + 3.83·59-s + 11.2·61-s + 10.0·63-s − 6.10·67-s − 0.300·69-s + ⋯ |
L(s) = 1 | − 0.280·3-s − 1.37·7-s − 0.921·9-s − 0.842·11-s − 0.794·13-s − 0.284·17-s + 0.229·19-s + 0.385·21-s + 0.128·23-s + 0.539·27-s − 0.922·29-s + 0.133·31-s + 0.236·33-s − 1.35·37-s + 0.223·39-s + 1.55·41-s − 1.60·43-s − 0.740·47-s + 0.885·49-s + 0.0800·51-s + 1.02·53-s − 0.0644·57-s + 0.499·59-s + 1.43·61-s + 1.26·63-s − 0.746·67-s − 0.0361·69-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5419413374 |
L(21) |
≈ |
0.5419413374 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+0.486T+3T2 |
| 7 | 1+3.63T+7T2 |
| 11 | 1+2.79T+11T2 |
| 13 | 1+2.86T+13T2 |
| 17 | 1+1.17T+17T2 |
| 23 | 1−0.617T+23T2 |
| 29 | 1+4.96T+29T2 |
| 31 | 1−0.745T+31T2 |
| 37 | 1+8.23T+37T2 |
| 41 | 1−9.98T+41T2 |
| 43 | 1+10.4T+43T2 |
| 47 | 1+5.07T+47T2 |
| 53 | 1−7.45T+53T2 |
| 59 | 1−3.83T+59T2 |
| 61 | 1−11.2T+61T2 |
| 67 | 1+6.10T+67T2 |
| 71 | 1+9.40T+71T2 |
| 73 | 1−9.52T+73T2 |
| 79 | 1+3.70T+79T2 |
| 83 | 1−4.66T+83T2 |
| 89 | 1−10.6T+89T2 |
| 97 | 1+0.629T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.593222436890973096530346120742, −7.67694376092315392620037092141, −6.97151306292891256872763844374, −6.26759576648153510219174166721, −5.51143912788659048075711805819, −4.93133487196376022304935597818, −3.69035037313820857998537092097, −2.98611152398659657223707538927, −2.20796277163223607968511295493, −0.39984940269767498431159631899,
0.39984940269767498431159631899, 2.20796277163223607968511295493, 2.98611152398659657223707538927, 3.69035037313820857998537092097, 4.93133487196376022304935597818, 5.51143912788659048075711805819, 6.26759576648153510219174166721, 6.97151306292891256872763844374, 7.67694376092315392620037092141, 8.593222436890973096530346120742