Properties

Label 2-3800-1.1-c1-0-3
Degree $2$
Conductor $3800$
Sign $1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.486·3-s − 3.63·7-s − 2.76·9-s − 2.79·11-s − 2.86·13-s − 1.17·17-s + 19-s + 1.76·21-s + 0.617·23-s + 2.80·27-s − 4.96·29-s + 0.745·31-s + 1.36·33-s − 8.23·37-s + 1.39·39-s + 9.98·41-s − 10.4·43-s − 5.07·47-s + 6.19·49-s + 0.571·51-s + 7.45·53-s − 0.486·57-s + 3.83·59-s + 11.2·61-s + 10.0·63-s − 6.10·67-s − 0.300·69-s + ⋯
L(s)  = 1  − 0.280·3-s − 1.37·7-s − 0.921·9-s − 0.842·11-s − 0.794·13-s − 0.284·17-s + 0.229·19-s + 0.385·21-s + 0.128·23-s + 0.539·27-s − 0.922·29-s + 0.133·31-s + 0.236·33-s − 1.35·37-s + 0.223·39-s + 1.55·41-s − 1.60·43-s − 0.740·47-s + 0.885·49-s + 0.0800·51-s + 1.02·53-s − 0.0644·57-s + 0.499·59-s + 1.43·61-s + 1.26·63-s − 0.746·67-s − 0.0361·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5419413374\)
\(L(\frac12)\) \(\approx\) \(0.5419413374\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + 0.486T + 3T^{2} \)
7 \( 1 + 3.63T + 7T^{2} \)
11 \( 1 + 2.79T + 11T^{2} \)
13 \( 1 + 2.86T + 13T^{2} \)
17 \( 1 + 1.17T + 17T^{2} \)
23 \( 1 - 0.617T + 23T^{2} \)
29 \( 1 + 4.96T + 29T^{2} \)
31 \( 1 - 0.745T + 31T^{2} \)
37 \( 1 + 8.23T + 37T^{2} \)
41 \( 1 - 9.98T + 41T^{2} \)
43 \( 1 + 10.4T + 43T^{2} \)
47 \( 1 + 5.07T + 47T^{2} \)
53 \( 1 - 7.45T + 53T^{2} \)
59 \( 1 - 3.83T + 59T^{2} \)
61 \( 1 - 11.2T + 61T^{2} \)
67 \( 1 + 6.10T + 67T^{2} \)
71 \( 1 + 9.40T + 71T^{2} \)
73 \( 1 - 9.52T + 73T^{2} \)
79 \( 1 + 3.70T + 79T^{2} \)
83 \( 1 - 4.66T + 83T^{2} \)
89 \( 1 - 10.6T + 89T^{2} \)
97 \( 1 + 0.629T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.593222436890973096530346120742, −7.67694376092315392620037092141, −6.97151306292891256872763844374, −6.26759576648153510219174166721, −5.51143912788659048075711805819, −4.93133487196376022304935597818, −3.69035037313820857998537092097, −2.98611152398659657223707538927, −2.20796277163223607968511295493, −0.39984940269767498431159631899, 0.39984940269767498431159631899, 2.20796277163223607968511295493, 2.98611152398659657223707538927, 3.69035037313820857998537092097, 4.93133487196376022304935597818, 5.51143912788659048075711805819, 6.26759576648153510219174166721, 6.97151306292891256872763844374, 7.67694376092315392620037092141, 8.593222436890973096530346120742

Graph of the $Z$-function along the critical line