L(s) = 1 | + 0.471·3-s + 0.567·7-s − 2.77·9-s + 4.37·11-s − 0.165·13-s − 7.94·17-s + 19-s + 0.267·21-s + 3.87·23-s − 2.72·27-s + 3.53·29-s + 3.20·31-s + 2.06·33-s + 10.1·37-s − 0.0779·39-s − 5.97·41-s + 12.0·43-s − 5.46·47-s − 6.67·49-s − 3.74·51-s − 2.00·53-s + 0.471·57-s + 8.32·59-s + 11.8·61-s − 1.57·63-s + 8.79·67-s + 1.82·69-s + ⋯ |
L(s) = 1 | + 0.271·3-s + 0.214·7-s − 0.926·9-s + 1.32·11-s − 0.0458·13-s − 1.92·17-s + 0.229·19-s + 0.0583·21-s + 0.807·23-s − 0.523·27-s + 0.655·29-s + 0.575·31-s + 0.358·33-s + 1.67·37-s − 0.0124·39-s − 0.932·41-s + 1.84·43-s − 0.796·47-s − 0.954·49-s − 0.524·51-s − 0.275·53-s + 0.0623·57-s + 1.08·59-s + 1.51·61-s − 0.198·63-s + 1.07·67-s + 0.219·69-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.033154134 |
L(21) |
≈ |
2.033154134 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1−0.471T+3T2 |
| 7 | 1−0.567T+7T2 |
| 11 | 1−4.37T+11T2 |
| 13 | 1+0.165T+13T2 |
| 17 | 1+7.94T+17T2 |
| 23 | 1−3.87T+23T2 |
| 29 | 1−3.53T+29T2 |
| 31 | 1−3.20T+31T2 |
| 37 | 1−10.1T+37T2 |
| 41 | 1+5.97T+41T2 |
| 43 | 1−12.0T+43T2 |
| 47 | 1+5.46T+47T2 |
| 53 | 1+2.00T+53T2 |
| 59 | 1−8.32T+59T2 |
| 61 | 1−11.8T+61T2 |
| 67 | 1−8.79T+67T2 |
| 71 | 1−0.720T+71T2 |
| 73 | 1−4.54T+73T2 |
| 79 | 1−11.7T+79T2 |
| 83 | 1+6.72T+83T2 |
| 89 | 1−8.11T+89T2 |
| 97 | 1+13.6T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.500193341886418798288013217090, −7.984820849934032354252099659200, −6.70582164544817996685952791504, −6.58743311623019396398719591619, −5.50809319115833067201241661972, −4.60314274779459705053605964331, −3.93283401751500165448886812878, −2.89417324206712532907744656805, −2.11319549206465084375759513915, −0.818379065893886754149673685414,
0.818379065893886754149673685414, 2.11319549206465084375759513915, 2.89417324206712532907744656805, 3.93283401751500165448886812878, 4.60314274779459705053605964331, 5.50809319115833067201241661972, 6.58743311623019396398719591619, 6.70582164544817996685952791504, 7.984820849934032354252099659200, 8.500193341886418798288013217090