Properties

Label 2-3800-1.1-c1-0-24
Degree $2$
Conductor $3800$
Sign $1$
Analytic cond. $30.3431$
Root an. cond. $5.50846$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.471·3-s + 0.567·7-s − 2.77·9-s + 4.37·11-s − 0.165·13-s − 7.94·17-s + 19-s + 0.267·21-s + 3.87·23-s − 2.72·27-s + 3.53·29-s + 3.20·31-s + 2.06·33-s + 10.1·37-s − 0.0779·39-s − 5.97·41-s + 12.0·43-s − 5.46·47-s − 6.67·49-s − 3.74·51-s − 2.00·53-s + 0.471·57-s + 8.32·59-s + 11.8·61-s − 1.57·63-s + 8.79·67-s + 1.82·69-s + ⋯
L(s)  = 1  + 0.271·3-s + 0.214·7-s − 0.926·9-s + 1.32·11-s − 0.0458·13-s − 1.92·17-s + 0.229·19-s + 0.0583·21-s + 0.807·23-s − 0.523·27-s + 0.655·29-s + 0.575·31-s + 0.358·33-s + 1.67·37-s − 0.0124·39-s − 0.932·41-s + 1.84·43-s − 0.796·47-s − 0.954·49-s − 0.524·51-s − 0.275·53-s + 0.0623·57-s + 1.08·59-s + 1.51·61-s − 0.198·63-s + 1.07·67-s + 0.219·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3800\)    =    \(2^{3} \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(30.3431\)
Root analytic conductor: \(5.50846\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.033154134\)
\(L(\frac12)\) \(\approx\) \(2.033154134\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
19 \( 1 - T \)
good3 \( 1 - 0.471T + 3T^{2} \)
7 \( 1 - 0.567T + 7T^{2} \)
11 \( 1 - 4.37T + 11T^{2} \)
13 \( 1 + 0.165T + 13T^{2} \)
17 \( 1 + 7.94T + 17T^{2} \)
23 \( 1 - 3.87T + 23T^{2} \)
29 \( 1 - 3.53T + 29T^{2} \)
31 \( 1 - 3.20T + 31T^{2} \)
37 \( 1 - 10.1T + 37T^{2} \)
41 \( 1 + 5.97T + 41T^{2} \)
43 \( 1 - 12.0T + 43T^{2} \)
47 \( 1 + 5.46T + 47T^{2} \)
53 \( 1 + 2.00T + 53T^{2} \)
59 \( 1 - 8.32T + 59T^{2} \)
61 \( 1 - 11.8T + 61T^{2} \)
67 \( 1 - 8.79T + 67T^{2} \)
71 \( 1 - 0.720T + 71T^{2} \)
73 \( 1 - 4.54T + 73T^{2} \)
79 \( 1 - 11.7T + 79T^{2} \)
83 \( 1 + 6.72T + 83T^{2} \)
89 \( 1 - 8.11T + 89T^{2} \)
97 \( 1 + 13.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.500193341886418798288013217090, −7.984820849934032354252099659200, −6.70582164544817996685952791504, −6.58743311623019396398719591619, −5.50809319115833067201241661972, −4.60314274779459705053605964331, −3.93283401751500165448886812878, −2.89417324206712532907744656805, −2.11319549206465084375759513915, −0.818379065893886754149673685414, 0.818379065893886754149673685414, 2.11319549206465084375759513915, 2.89417324206712532907744656805, 3.93283401751500165448886812878, 4.60314274779459705053605964331, 5.50809319115833067201241661972, 6.58743311623019396398719591619, 6.70582164544817996685952791504, 7.984820849934032354252099659200, 8.500193341886418798288013217090

Graph of the $Z$-function along the critical line