L(s) = 1 | − 2.79·3-s − 0.127·7-s + 4.83·9-s + 5.21·11-s + 0.515·13-s − 3.58·17-s + 19-s + 0.357·21-s + 6.50·23-s − 5.14·27-s − 3.05·29-s + 5.44·31-s − 14.5·33-s + 4.99·37-s − 1.44·39-s + 11.4·41-s + 2.06·43-s − 11.9·47-s − 6.98·49-s + 10.0·51-s − 2.25·53-s − 2.79·57-s + 1.89·59-s − 5.83·61-s − 0.616·63-s − 0.432·67-s − 18.2·69-s + ⋯ |
L(s) = 1 | − 1.61·3-s − 0.0482·7-s + 1.61·9-s + 1.57·11-s + 0.142·13-s − 0.868·17-s + 0.229·19-s + 0.0779·21-s + 1.35·23-s − 0.989·27-s − 0.567·29-s + 0.977·31-s − 2.54·33-s + 0.821·37-s − 0.231·39-s + 1.78·41-s + 0.315·43-s − 1.73·47-s − 0.997·49-s + 1.40·51-s − 0.310·53-s − 0.370·57-s + 0.246·59-s − 0.746·61-s − 0.0777·63-s − 0.0528·67-s − 2.19·69-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.130277600 |
L(21) |
≈ |
1.130277600 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1−T |
good | 3 | 1+2.79T+3T2 |
| 7 | 1+0.127T+7T2 |
| 11 | 1−5.21T+11T2 |
| 13 | 1−0.515T+13T2 |
| 17 | 1+3.58T+17T2 |
| 23 | 1−6.50T+23T2 |
| 29 | 1+3.05T+29T2 |
| 31 | 1−5.44T+31T2 |
| 37 | 1−4.99T+37T2 |
| 41 | 1−11.4T+41T2 |
| 43 | 1−2.06T+43T2 |
| 47 | 1+11.9T+47T2 |
| 53 | 1+2.25T+53T2 |
| 59 | 1−1.89T+59T2 |
| 61 | 1+5.83T+61T2 |
| 67 | 1+0.432T+67T2 |
| 71 | 1−4.77T+71T2 |
| 73 | 1+9.98T+73T2 |
| 79 | 1+3.28T+79T2 |
| 83 | 1+0.496T+83T2 |
| 89 | 1+12.4T+89T2 |
| 97 | 1+7.00T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.608745651008628304098962327464, −7.49163907542998302063450450876, −6.72102504178230645985307422390, −6.33086137809520624732184850792, −5.64811165387960118728315524922, −4.65869862139211995941945149502, −4.26604169880664857795514823217, −3.06957168552183725983460075786, −1.58445090308576382903331718354, −0.71925271457209539483102620124,
0.71925271457209539483102620124, 1.58445090308576382903331718354, 3.06957168552183725983460075786, 4.26604169880664857795514823217, 4.65869862139211995941945149502, 5.64811165387960118728315524922, 6.33086137809520624732184850792, 6.72102504178230645985307422390, 7.49163907542998302063450450876, 8.608745651008628304098962327464