L(s) = 1 | − 1.93·3-s + 1.24·7-s + 0.747·9-s − 0.513·11-s + 6.15·13-s − 4.51·17-s − 19-s − 2.41·21-s − 5.86·23-s + 4.36·27-s + 6.62·29-s + 6.41·31-s + 0.994·33-s − 1.40·37-s − 11.9·39-s + 10.6·41-s − 3.04·43-s − 1.99·47-s − 5.44·49-s + 8.74·51-s − 14.0·53-s + 1.93·57-s − 4.34·59-s + 10.7·61-s + 0.932·63-s − 9.89·67-s + 11.3·69-s + ⋯ |
L(s) = 1 | − 1.11·3-s + 0.471·7-s + 0.249·9-s − 0.154·11-s + 1.70·13-s − 1.09·17-s − 0.229·19-s − 0.526·21-s − 1.22·23-s + 0.839·27-s + 1.23·29-s + 1.15·31-s + 0.173·33-s − 0.231·37-s − 1.90·39-s + 1.66·41-s − 0.464·43-s − 0.290·47-s − 0.777·49-s + 1.22·51-s − 1.93·53-s + 0.256·57-s − 0.565·59-s + 1.37·61-s + 0.117·63-s − 1.20·67-s + 1.36·69-s + ⋯ |
Λ(s)=(=(3800s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(3800s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.187856709 |
L(21) |
≈ |
1.187856709 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 19 | 1+T |
good | 3 | 1+1.93T+3T2 |
| 7 | 1−1.24T+7T2 |
| 11 | 1+0.513T+11T2 |
| 13 | 1−6.15T+13T2 |
| 17 | 1+4.51T+17T2 |
| 23 | 1+5.86T+23T2 |
| 29 | 1−6.62T+29T2 |
| 31 | 1−6.41T+31T2 |
| 37 | 1+1.40T+37T2 |
| 41 | 1−10.6T+41T2 |
| 43 | 1+3.04T+43T2 |
| 47 | 1+1.99T+47T2 |
| 53 | 1+14.0T+53T2 |
| 59 | 1+4.34T+59T2 |
| 61 | 1−10.7T+61T2 |
| 67 | 1+9.89T+67T2 |
| 71 | 1−7.42T+71T2 |
| 73 | 1−12.8T+73T2 |
| 79 | 1−2.56T+79T2 |
| 83 | 1+7.50T+83T2 |
| 89 | 1+7.85T+89T2 |
| 97 | 1−6.74T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.329969858292361094229887419795, −7.983451765466953643050475616939, −6.50284192652144108068409233795, −6.44479818527058019354710437964, −5.61983152234551653815331344414, −4.71292219796688939119103390979, −4.15706055029957661762160157046, −2.98833209566256860990705508822, −1.77939889325735359663450105121, −0.68198939034702020857083765837,
0.68198939034702020857083765837, 1.77939889325735359663450105121, 2.98833209566256860990705508822, 4.15706055029957661762160157046, 4.71292219796688939119103390979, 5.61983152234551653815331344414, 6.44479818527058019354710437964, 6.50284192652144108068409233795, 7.983451765466953643050475616939, 8.329969858292361094229887419795