L(s) = 1 | + (−1.31 + 0.531i)2-s + (0.664 − 0.791i)3-s + (1.43 − 1.39i)4-s + (0.846 + 2.06i)5-s + (−0.450 + 1.39i)6-s + (1.98 + 3.43i)7-s + (−1.14 + 2.58i)8-s + (0.335 + 1.90i)9-s + (−2.20 − 2.26i)10-s + (−3.95 − 2.28i)11-s + (−0.149 − 2.06i)12-s + (−1.59 + 1.34i)13-s + (−4.42 − 3.44i)14-s + (2.20 + 0.704i)15-s + (0.120 − 3.99i)16-s + (−3.02 − 0.532i)17-s + ⋯ |
L(s) = 1 | + (−0.926 + 0.375i)2-s + (0.383 − 0.457i)3-s + (0.717 − 0.696i)4-s + (0.378 + 0.925i)5-s + (−0.183 + 0.567i)6-s + (0.749 + 1.29i)7-s + (−0.403 + 0.915i)8-s + (0.111 + 0.634i)9-s + (−0.698 − 0.715i)10-s + (−1.19 − 0.689i)11-s + (−0.0430 − 0.595i)12-s + (−0.442 + 0.371i)13-s + (−1.18 − 0.921i)14-s + (0.568 + 0.182i)15-s + (0.0300 − 0.999i)16-s + (−0.732 − 0.129i)17-s + ⋯ |
Λ(s)=(=(380s/2ΓC(s)L(s)(0.0488−0.998i)Λ(2−s)
Λ(s)=(=(380s/2ΓC(s+1/2)L(s)(0.0488−0.998i)Λ(1−s)
Degree: |
2 |
Conductor: |
380
= 22⋅5⋅19
|
Sign: |
0.0488−0.998i
|
Analytic conductor: |
3.03431 |
Root analytic conductor: |
1.74192 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ380(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 380, ( :1/2), 0.0488−0.998i)
|
Particular Values
L(1) |
≈ |
0.738487+0.703257i |
L(21) |
≈ |
0.738487+0.703257i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.31−0.531i)T |
| 5 | 1+(−0.846−2.06i)T |
| 19 | 1+(−2.31−3.69i)T |
good | 3 | 1+(−0.664+0.791i)T+(−0.520−2.95i)T2 |
| 7 | 1+(−1.98−3.43i)T+(−3.5+6.06i)T2 |
| 11 | 1+(3.95+2.28i)T+(5.5+9.52i)T2 |
| 13 | 1+(1.59−1.34i)T+(2.25−12.8i)T2 |
| 17 | 1+(3.02+0.532i)T+(15.9+5.81i)T2 |
| 23 | 1+(4.89+1.78i)T+(17.6+14.7i)T2 |
| 29 | 1+(−8.07+1.42i)T+(27.2−9.91i)T2 |
| 31 | 1+(−0.128−0.223i)T+(−15.5+26.8i)T2 |
| 37 | 1−4.87T+37T2 |
| 41 | 1+(−3.49+4.16i)T+(−7.11−40.3i)T2 |
| 43 | 1+(3.50−1.27i)T+(32.9−27.6i)T2 |
| 47 | 1+(1.32+7.54i)T+(−44.1+16.0i)T2 |
| 53 | 1+(−5.94−2.16i)T+(40.6+34.0i)T2 |
| 59 | 1+(−0.0505+0.286i)T+(−55.4−20.1i)T2 |
| 61 | 1+(−12.9−4.72i)T+(46.7+39.2i)T2 |
| 67 | 1+(−6.61+1.16i)T+(62.9−22.9i)T2 |
| 71 | 1+(−4.32+1.57i)T+(54.3−45.6i)T2 |
| 73 | 1+(−4.91+5.85i)T+(−12.6−71.8i)T2 |
| 79 | 1+(−1.37−1.15i)T+(13.7+77.7i)T2 |
| 83 | 1+(−3.10−5.37i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−0.410−0.489i)T+(−15.4+87.6i)T2 |
| 97 | 1+(−3.18+18.0i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35252356294817540997582183865, −10.53683814707334878845460515898, −9.750502743587796091421499486511, −8.433286573275931460393891252201, −8.110850065437173395449961624129, −7.07321088259954921900316177513, −5.97777585818470848949240199790, −5.16322507279029755243153481288, −2.59473485709930834146725866197, −2.12716131801367150974809516498,
0.882371924769916065371463775211, 2.47798266082917076085350899764, 4.06922674573588023352950816860, 4.94780581061117866232601654232, 6.69822189764646896892849235608, 7.77828307600962297235325350811, 8.363041072277967109948974277458, 9.548422509099917402536675351071, 10.00591114700846120127379623430, 10.82837483020900148080701307332