L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s − 1.76·5-s + (−1.85 − 1.88i)7-s − 0.999·8-s + (−0.880 + 1.52i)10-s − 6.12·11-s + (−0.380 + 0.658i)13-s + (−2.56 + 0.658i)14-s + (−0.5 + 0.866i)16-s + (3.42 − 5.92i)17-s + (0.971 + 1.68i)19-s + (0.880 + 1.52i)20-s + (−3.06 + 5.30i)22-s + 0.421·23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s − 0.787·5-s + (−0.699 − 0.714i)7-s − 0.353·8-s + (−0.278 + 0.482i)10-s − 1.84·11-s + (−0.105 + 0.182i)13-s + (−0.684 + 0.176i)14-s + (−0.125 + 0.216i)16-s + (0.829 − 1.43i)17-s + (0.222 + 0.385i)19-s + (0.196 + 0.340i)20-s + (−0.652 + 1.13i)22-s + 0.0877·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.00294i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.00294i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.000903517 + 0.613459i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.000903517 + 0.613459i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (1.85 + 1.88i)T \) |
good | 5 | \( 1 + 1.76T + 5T^{2} \) |
| 11 | \( 1 + 6.12T + 11T^{2} \) |
| 13 | \( 1 + (0.380 - 0.658i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-3.42 + 5.92i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.971 - 1.68i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 0.421T + 23T^{2} \) |
| 29 | \( 1 + (0.732 + 1.26i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (3.85 + 6.67i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.44 - 2.49i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.47 + 6.01i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.33 - 7.49i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.830 + 1.43i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.112 + 0.195i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.993 - 1.72i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.17 + 8.96i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.39 + 5.87i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 10.7T + 71T^{2} \) |
| 73 | \( 1 + (-0.153 + 0.265i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-6.72 + 11.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.56 - 2.70i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (1.30 + 2.25i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (1.81 + 3.14i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.97144798223153818195343124141, −10.11169026628998749026504886155, −9.406912235511257425534819574308, −7.82494211585960394911146107302, −7.40905527821513094616404060027, −5.84556050361431472095173972991, −4.79422875787954971046199739274, −3.64865809708631476687084111966, −2.65340581656796967192014953991, −0.34819613831173027322640924367,
2.73773347524747614503043618865, 3.80189995746138570002847682005, 5.22668999589650630682799591468, 5.89759429932511178320383580650, 7.24046152598763549378944065686, 7.975512004276375213294539089884, 8.774887797352642442662772820154, 10.03046998486854960710988080136, 10.88686479881959868189646208150, 12.13285063752530699729222655532