L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s + 3.18·5-s + (0.710 − 2.54i)7-s + 0.999·8-s + (−1.59 + 2.75i)10-s − 3.18·11-s + (2.85 − 4.93i)13-s + (1.85 + 1.88i)14-s + (−0.5 + 0.866i)16-s + (0.760 − 1.31i)17-s + (−0.641 − 1.11i)19-s + (−1.59 − 2.75i)20-s + (1.59 − 2.75i)22-s − 2.23·23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s + 1.42·5-s + (0.268 − 0.963i)7-s + 0.353·8-s + (−0.503 + 0.871i)10-s − 0.959·11-s + (0.790 − 1.36i)13-s + (0.494 + 0.505i)14-s + (−0.125 + 0.216i)16-s + (0.184 − 0.319i)17-s + (−0.147 − 0.254i)19-s + (−0.355 − 0.616i)20-s + (0.339 − 0.587i)22-s − 0.466·23-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(0.999+0.00294i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(0.999+0.00294i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
0.999+0.00294i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), 0.999+0.00294i)
|
Particular Values
L(1) |
≈ |
1.38973−0.00204684i |
L(21) |
≈ |
1.38973−0.00204684i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1 |
| 7 | 1+(−0.710+2.54i)T |
good | 5 | 1−3.18T+5T2 |
| 11 | 1+3.18T+11T2 |
| 13 | 1+(−2.85+4.93i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−0.760+1.31i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.641+1.11i)T+(−9.5+16.4i)T2 |
| 23 | 1+2.23T+23T2 |
| 29 | 1+(−3.54−6.13i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4.71−8.15i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2.80+4.85i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−3.41−5.91i)T+(−21.5+37.2i)T2 |
| 47 | 1+(2.91−5.04i)T+(−23.5−40.7i)T2 |
| 53 | 1+(1.02−1.78i)T+(−26.5−45.8i)T2 |
| 59 | 1+(0.562+0.974i)T+(−29.5+51.0i)T2 |
| 61 | 1+(1.56−2.70i)T+(−30.5−52.8i)T2 |
| 67 | 1+(5.48+9.49i)T+(−33.5+58.0i)T2 |
| 71 | 1+8.69T+71T2 |
| 73 | 1+(2.48−4.30i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.06+3.58i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−4.03−6.98i)T+(−41.5+71.8i)T2 |
| 89 | 1+(0.112+0.195i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−7.42−12.8i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65854808284521445423340039810, −10.56567793432145524084938723653, −9.603360608405160181028994887321, −8.485915307753444226217294737256, −7.66682594770704328895198652806, −6.56306645923745034013988641708, −5.65171965761350440612036963254, −4.81146958152562143543122396892, −2.97002455780179579234501584556, −1.21296200663693563952143453751,
1.80486715827586510244283793887, 2.58332120179096718550293936343, 4.35302998245710172781996760259, 5.67587743052420171466070092200, 6.33494758858488591759251296799, 7.959176723345529284096229554916, 8.817130951228127687827628812753, 9.634404470272099906715239586508, 10.28982942262321705074592652744, 11.35899864675022016392162119692