L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.593·5-s + (−0.0665 + 2.64i)7-s + 0.999·8-s + (0.296 − 0.514i)10-s + 0.593·11-s + (−1.25 + 2.17i)13-s + (−2.25 − 1.38i)14-s + (−0.5 + 0.866i)16-s + (−1.46 + 2.52i)17-s + (2.69 + 4.66i)19-s + (0.296 + 0.514i)20-s + (−0.296 + 0.514i)22-s − 4.46·23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s − 0.265·5-s + (−0.0251 + 0.999i)7-s + 0.353·8-s + (0.0938 − 0.162i)10-s + 0.178·11-s + (−0.348 + 0.603i)13-s + (−0.603 − 0.368i)14-s + (−0.125 + 0.216i)16-s + (−0.354 + 0.613i)17-s + (0.617 + 1.06i)19-s + (0.0663 + 0.114i)20-s + (−0.0632 + 0.109i)22-s − 0.930·23-s + ⋯ |
Λ(s)=(=(378s/2ΓC(s)L(s)(−0.609−0.792i)Λ(2−s)
Λ(s)=(=(378s/2ΓC(s+1/2)L(s)(−0.609−0.792i)Λ(1−s)
Degree: |
2 |
Conductor: |
378
= 2⋅33⋅7
|
Sign: |
−0.609−0.792i
|
Analytic conductor: |
3.01834 |
Root analytic conductor: |
1.73733 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ378(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 378, ( :1/2), −0.609−0.792i)
|
Particular Values
L(1) |
≈ |
0.376658+0.764442i |
L(21) |
≈ |
0.376658+0.764442i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5−0.866i)T |
| 3 | 1 |
| 7 | 1+(0.0665−2.64i)T |
good | 5 | 1+0.593T+5T2 |
| 11 | 1−0.593T+11T2 |
| 13 | 1+(1.25−2.17i)T+(−6.5−11.2i)T2 |
| 17 | 1+(1.46−2.52i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−2.69−4.66i)T+(−9.5+16.4i)T2 |
| 23 | 1+4.46T+23T2 |
| 29 | 1+(−3.09−5.36i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−3.93−6.81i)T+(−15.5+26.8i)T2 |
| 37 | 1+(−0.5−0.866i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−0.136+0.236i)T+(−20.5−35.5i)T2 |
| 43 | 1+(5.58+9.66i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−6.08+10.5i)T+(−23.5−40.7i)T2 |
| 53 | 1+(4.02−6.97i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−4.32−7.48i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−3.32+5.75i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−0.956−1.65i)T+(−33.5+58.0i)T2 |
| 71 | 1−14.4T+71T2 |
| 73 | 1+(−3.95+6.85i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−4.62+8.00i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.85+6.66i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−6.21−10.7i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−5.86−10.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.98647974666041346932303693560, −10.57594986926823079797590206614, −9.727104775925431944125837671449, −8.755022131637625542872844524264, −8.113658215841622770996367541887, −6.95522896531781704814822976055, −6.02304779982039994760018645355, −5.06043877812093635130566172818, −3.69721634376078247122664610306, −1.92734219114311631730865400329,
0.64848224129327926610869568510, 2.55147765920002646137517570120, 3.86472451637733685311821579134, 4.81664585564264533858711100717, 6.39360013178579474315822769517, 7.56037032028413341592125498858, 8.135812797060768007880511251695, 9.597382888290522271631012122468, 9.956711435928012677571310782686, 11.21847873660925762458660780044