L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.499 − 0.866i)4-s − 0.593·5-s + (−0.0665 + 2.64i)7-s + 0.999·8-s + (0.296 − 0.514i)10-s + 0.593·11-s + (−1.25 + 2.17i)13-s + (−2.25 − 1.38i)14-s + (−0.5 + 0.866i)16-s + (−1.46 + 2.52i)17-s + (2.69 + 4.66i)19-s + (0.296 + 0.514i)20-s + (−0.296 + 0.514i)22-s − 4.46·23-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.249 − 0.433i)4-s − 0.265·5-s + (−0.0251 + 0.999i)7-s + 0.353·8-s + (0.0938 − 0.162i)10-s + 0.178·11-s + (−0.348 + 0.603i)13-s + (−0.603 − 0.368i)14-s + (−0.125 + 0.216i)16-s + (−0.354 + 0.613i)17-s + (0.617 + 1.06i)19-s + (0.0663 + 0.114i)20-s + (−0.0632 + 0.109i)22-s − 0.930·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.609 - 0.792i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.609 - 0.792i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.376658 + 0.764442i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.376658 + 0.764442i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.0665 - 2.64i)T \) |
good | 5 | \( 1 + 0.593T + 5T^{2} \) |
| 11 | \( 1 - 0.593T + 11T^{2} \) |
| 13 | \( 1 + (1.25 - 2.17i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.46 - 2.52i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.69 - 4.66i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + 4.46T + 23T^{2} \) |
| 29 | \( 1 + (-3.09 - 5.36i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.93 - 6.81i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.136 + 0.236i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (5.58 + 9.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-6.08 + 10.5i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.02 - 6.97i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.32 - 7.48i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.32 + 5.75i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.956 - 1.65i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 14.4T + 71T^{2} \) |
| 73 | \( 1 + (-3.95 + 6.85i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-4.62 + 8.00i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3.85 + 6.66i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-6.21 - 10.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.86 - 10.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.98647974666041346932303693560, −10.57594986926823079797590206614, −9.727104775925431944125837671449, −8.755022131637625542872844524264, −8.113658215841622770996367541887, −6.95522896531781704814822976055, −6.02304779982039994760018645355, −5.06043877812093635130566172818, −3.69721634376078247122664610306, −1.92734219114311631730865400329,
0.64848224129327926610869568510, 2.55147765920002646137517570120, 3.86472451637733685311821579134, 4.81664585564264533858711100717, 6.39360013178579474315822769517, 7.56037032028413341592125498858, 8.135812797060768007880511251695, 9.597382888290522271631012122468, 9.956711435928012677571310782686, 11.21847873660925762458660780044