L(s) = 1 | + (0.707 − 1.22i)2-s + (−0.999 − 1.73i)4-s + (−8.58 + 4.95i)5-s + (6.88 + 1.25i)7-s − 2.82·8-s + 14.0i·10-s + (6.74 − 11.6i)11-s + (10.5 − 6.07i)13-s + (6.40 − 7.54i)14-s + (−2.00 + 3.46i)16-s − 20.1i·17-s − 4.66i·19-s + (17.1 + 9.91i)20-s + (−9.53 − 16.5i)22-s + (0.0880 + 0.152i)23-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (−1.71 + 0.991i)5-s + (0.983 + 0.179i)7-s − 0.353·8-s + 1.40i·10-s + (0.612 − 1.06i)11-s + (0.809 − 0.467i)13-s + (0.457 − 0.539i)14-s + (−0.125 + 0.216i)16-s − 1.18i·17-s − 0.245i·19-s + (0.858 + 0.495i)20-s + (−0.433 − 0.750i)22-s + (0.00382 + 0.00662i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0677 + 0.997i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.0677 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.11250 - 1.03947i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11250 - 1.03947i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 + 1.22i)T \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-6.88 - 1.25i)T \) |
good | 5 | \( 1 + (8.58 - 4.95i)T + (12.5 - 21.6i)T^{2} \) |
| 11 | \( 1 + (-6.74 + 11.6i)T + (-60.5 - 104. i)T^{2} \) |
| 13 | \( 1 + (-10.5 + 6.07i)T + (84.5 - 146. i)T^{2} \) |
| 17 | \( 1 + 20.1iT - 289T^{2} \) |
| 19 | \( 1 + 4.66iT - 361T^{2} \) |
| 23 | \( 1 + (-0.0880 - 0.152i)T + (-264.5 + 458. i)T^{2} \) |
| 29 | \( 1 + (-7.01 + 12.1i)T + (-420.5 - 728. i)T^{2} \) |
| 31 | \( 1 + (-0.0205 + 0.0118i)T + (480.5 - 832. i)T^{2} \) |
| 37 | \( 1 + 2.42T + 1.36e3T^{2} \) |
| 41 | \( 1 + (-9.48 + 5.47i)T + (840.5 - 1.45e3i)T^{2} \) |
| 43 | \( 1 + (3.53 - 6.11i)T + (-924.5 - 1.60e3i)T^{2} \) |
| 47 | \( 1 + (-39.7 - 22.9i)T + (1.10e3 + 1.91e3i)T^{2} \) |
| 53 | \( 1 - 57.1T + 2.80e3T^{2} \) |
| 59 | \( 1 + (41.9 - 24.2i)T + (1.74e3 - 3.01e3i)T^{2} \) |
| 61 | \( 1 + (34.2 + 19.7i)T + (1.86e3 + 3.22e3i)T^{2} \) |
| 67 | \( 1 + (45.1 + 78.2i)T + (-2.24e3 + 3.88e3i)T^{2} \) |
| 71 | \( 1 - 80.6T + 5.04e3T^{2} \) |
| 73 | \( 1 + 17.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + (-10.1 + 17.6i)T + (-3.12e3 - 5.40e3i)T^{2} \) |
| 83 | \( 1 + (25.2 + 14.5i)T + (3.44e3 + 5.96e3i)T^{2} \) |
| 89 | \( 1 + 81.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (94.2 + 54.4i)T + (4.70e3 + 8.14e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.18763844523711434706312639127, −10.54910892163421172427454461573, −8.951873974848498952492021703548, −8.142584981119853176114483225467, −7.26905274941175735595250920554, −6.06020228963235647581062967098, −4.65589206895110914049316165249, −3.69747784526485098288295895620, −2.82047872501035751848610109850, −0.71860743580311654316701612597,
1.34960822580336895444150865082, 3.92603578675148048134621451760, 4.24633109552575599938757101282, 5.30748355242698932028296972549, 6.81943916198312497507086359642, 7.71057035159873880483536110379, 8.393531303867751041639931797379, 9.057740937673175702130784282343, 10.70145585510413799147944155783, 11.66038607739991479125598878685