Properties

Label 2-378-189.103-c2-0-26
Degree $2$
Conductor $378$
Sign $0.953 + 0.300i$
Analytic cond. $10.2997$
Root an. cond. $3.20932$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.245 + 1.39i)2-s + (−0.319 + 2.98i)3-s + (−1.87 + 0.684i)4-s + (−8.21 − 1.44i)5-s + (−4.23 + 0.288i)6-s + (6.97 + 0.636i)7-s + (−1.41 − 2.44i)8-s + (−8.79 − 1.90i)9-s − 11.7i·10-s + (−3.18 − 18.0i)11-s + (−1.44 − 5.82i)12-s + (11.7 − 14.0i)13-s + (0.825 + 9.86i)14-s + (6.93 − 24.0i)15-s + (3.06 − 2.57i)16-s + 13.7i·17-s + ⋯
L(s)  = 1  + (0.122 + 0.696i)2-s + (−0.106 + 0.994i)3-s + (−0.469 + 0.171i)4-s + (−1.64 − 0.289i)5-s + (−0.705 + 0.0480i)6-s + (0.995 + 0.0909i)7-s + (−0.176 − 0.306i)8-s + (−0.977 − 0.211i)9-s − 1.17i·10-s + (−0.289 − 1.64i)11-s + (−0.120 − 0.485i)12-s + (0.904 − 1.07i)13-s + (0.0589 + 0.704i)14-s + (0.462 − 1.60i)15-s + (0.191 − 0.160i)16-s + 0.806i·17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.953 + 0.300i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 378 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.953 + 0.300i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(378\)    =    \(2 \cdot 3^{3} \cdot 7\)
Sign: $0.953 + 0.300i$
Analytic conductor: \(10.2997\)
Root analytic conductor: \(3.20932\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{378} (103, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 378,\ (\ :1),\ 0.953 + 0.300i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.802103 - 0.123173i\)
\(L(\frac12)\) \(\approx\) \(0.802103 - 0.123173i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.245 - 1.39i)T \)
3 \( 1 + (0.319 - 2.98i)T \)
7 \( 1 + (-6.97 - 0.636i)T \)
good5 \( 1 + (8.21 + 1.44i)T + (23.4 + 8.55i)T^{2} \)
11 \( 1 + (3.18 + 18.0i)T + (-113. + 41.3i)T^{2} \)
13 \( 1 + (-11.7 + 14.0i)T + (-29.3 - 166. i)T^{2} \)
17 \( 1 - 13.7iT - 289T^{2} \)
19 \( 1 - 28.1iT - 361T^{2} \)
23 \( 1 + (9.53 + 7.99i)T + (91.8 + 520. i)T^{2} \)
29 \( 1 + (7.42 - 6.22i)T + (146. - 828. i)T^{2} \)
31 \( 1 + (10.9 + 30.1i)T + (-736. + 617. i)T^{2} \)
37 \( 1 + (12.8 + 22.1i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (-47.1 + 56.2i)T + (-291. - 1.65e3i)T^{2} \)
43 \( 1 + (43.1 + 15.7i)T + (1.41e3 + 1.18e3i)T^{2} \)
47 \( 1 + (-9.88 + 27.1i)T + (-1.69e3 - 1.41e3i)T^{2} \)
53 \( 1 + (25.4 + 44.1i)T + (-1.40e3 + 2.43e3i)T^{2} \)
59 \( 1 + (-47.8 + 57.0i)T + (-604. - 3.42e3i)T^{2} \)
61 \( 1 + (-5.80 + 15.9i)T + (-2.85e3 - 2.39e3i)T^{2} \)
67 \( 1 + (4.23 - 24.0i)T + (-4.21e3 - 1.53e3i)T^{2} \)
71 \( 1 + (-6.53 + 11.3i)T + (-2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-4.96 - 2.86i)T + (2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (12.3 + 69.8i)T + (-5.86e3 + 2.13e3i)T^{2} \)
83 \( 1 + (54.5 + 64.9i)T + (-1.19e3 + 6.78e3i)T^{2} \)
89 \( 1 - 110. iT - 7.92e3T^{2} \)
97 \( 1 + (-36.3 + 99.9i)T + (-7.20e3 - 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.04840455456978966505897155751, −10.46375642124985135841225565855, −8.728023793893557616745252015466, −8.274883743758745736881402245509, −7.81837227818520321393713284901, −5.93818830788871692368841875459, −5.31416760161640706541808818228, −3.90836630656272251534892722887, −3.60442415455161429928312676427, −0.39405826057936636479522535348, 1.34693084239610283512988979353, 2.70085018719634880881769210999, 4.21207316052142709837814727363, 4.93363000182188766608605630422, 6.81171846910687204597803250502, 7.43493822506253541839258593917, 8.255421632694658134688761782067, 9.245461693267654225814330300534, 10.80417013634300810594348385192, 11.52302807315551947214227702133

Graph of the $Z$-function along the critical line