L(s) = 1 | − 3i·5-s − 3·7-s + i·13-s + 7·17-s + 4i·19-s + 4·23-s − 4·25-s + 4i·29-s + 8·31-s + 9i·35-s + 7i·37-s − 2·41-s + i·43-s − 7·47-s + 2·49-s + ⋯ |
L(s) = 1 | − 1.34i·5-s − 1.13·7-s + 0.277i·13-s + 1.69·17-s + 0.917i·19-s + 0.834·23-s − 0.800·25-s + 0.742i·29-s + 1.43·31-s + 1.52i·35-s + 1.15i·37-s − 0.312·41-s + 0.152i·43-s − 1.02·47-s + 0.285·49-s + ⋯ |
Λ(s)=(=(3744s/2ΓC(s)L(s)(0.707+0.707i)Λ(2−s)
Λ(s)=(=(3744s/2ΓC(s+1/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
3744
= 25⋅32⋅13
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
29.8959 |
Root analytic conductor: |
5.46772 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3744(1873,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3744, ( :1/2), 0.707+0.707i)
|
Particular Values
L(1) |
≈ |
1.662086679 |
L(21) |
≈ |
1.662086679 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−iT |
good | 5 | 1+3iT−5T2 |
| 7 | 1+3T+7T2 |
| 11 | 1−11T2 |
| 17 | 1−7T+17T2 |
| 19 | 1−4iT−19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1−4iT−29T2 |
| 31 | 1−8T+31T2 |
| 37 | 1−7iT−37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1−iT−43T2 |
| 47 | 1+7T+47T2 |
| 53 | 1+4iT−53T2 |
| 59 | 1+14iT−59T2 |
| 61 | 1+10iT−61T2 |
| 67 | 1+2iT−67T2 |
| 71 | 1+3T+71T2 |
| 73 | 1−14T+73T2 |
| 79 | 1−10T+79T2 |
| 83 | 1−14iT−83T2 |
| 89 | 1+89T2 |
| 97 | 1−8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.249013359938070707737154342917, −8.024390805779863929082350778109, −6.78827086121344587444916827575, −6.24822188770034146979853787686, −5.24572452337337432413576212737, −4.83755644608983131410532151537, −3.63313328700375840805774317030, −3.11027091550498953658062136111, −1.61379954473299415405957426706, −0.72156226730330465486695067466,
0.814596216461762226005109417355, 2.50667611440250328149732812498, 3.06833981906607753311022033292, 3.66409819739302987864936745574, 4.85360871593317142099655212774, 5.89642221190825359384461806898, 6.36091404248984226508671355346, 7.18313079836657899187790598726, 7.58448174844116243181029221418, 8.634062321997018886648688134846