L(s) = 1 | − 5-s + 3i·7-s + 2·11-s + (−3 + 2i)13-s − 3·17-s − 6·23-s − 4·25-s − 6i·29-s − 3i·35-s + 3·37-s − 10i·41-s − 9i·43-s + 7i·47-s − 2·49-s + 6i·53-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.13i·7-s + 0.603·11-s + (−0.832 + 0.554i)13-s − 0.727·17-s − 1.25·23-s − 0.800·25-s − 1.11i·29-s − 0.507i·35-s + 0.493·37-s − 1.56i·41-s − 1.37i·43-s + 1.02i·47-s − 0.285·49-s + 0.824i·53-s + ⋯ |
Λ(s)=(=(3744s/2ΓC(s)L(s)(−0.196+0.980i)Λ(2−s)
Λ(s)=(=(3744s/2ΓC(s+1/2)L(s)(−0.196+0.980i)Λ(1−s)
Degree: |
2 |
Conductor: |
3744
= 25⋅32⋅13
|
Sign: |
−0.196+0.980i
|
Analytic conductor: |
29.8959 |
Root analytic conductor: |
5.46772 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3744(1585,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3744, ( :1/2), −0.196+0.980i)
|
Particular Values
L(1) |
≈ |
0.5484268275 |
L(21) |
≈ |
0.5484268275 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(3−2i)T |
good | 5 | 1+T+5T2 |
| 7 | 1−3iT−7T2 |
| 11 | 1−2T+11T2 |
| 17 | 1+3T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+6T+23T2 |
| 29 | 1+6iT−29T2 |
| 31 | 1−31T2 |
| 37 | 1−3T+37T2 |
| 41 | 1+10iT−41T2 |
| 43 | 1+9iT−43T2 |
| 47 | 1−7iT−47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−10T+59T2 |
| 61 | 1+10iT−61T2 |
| 67 | 1−12T+67T2 |
| 71 | 1−5iT−71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1+16T+83T2 |
| 89 | 1−4iT−89T2 |
| 97 | 1+18iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.350174052216300662525422634468, −7.62046902975398087474564107542, −6.82162951728595368314451217572, −6.03935617624287427887833445924, −5.39696187218225109748207916278, −4.33348688716486543184726182852, −3.82971133827768777415195765379, −2.48037220080733794914316177378, −1.97353877672884316303680034318, −0.17471963942233941914089943808,
1.05229788046133669700911800195, 2.27692366594132568685905235280, 3.42878837016600000907123002105, 4.12096496599099372486847831525, 4.74963001396955454767547963126, 5.77697655521623084653260108503, 6.69206385819191479688383533557, 7.22895213128669574766760036898, 7.971741426722753366922585104685, 8.521627997179533620272873888961