Properties

Label 2-3744-104.77-c1-0-45
Degree $2$
Conductor $3744$
Sign $-0.196 + 0.980i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3i·7-s + 2·11-s + (−3 + 2i)13-s − 3·17-s − 6·23-s − 4·25-s − 6i·29-s − 3i·35-s + 3·37-s − 10i·41-s − 9i·43-s + 7i·47-s − 2·49-s + 6i·53-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.13i·7-s + 0.603·11-s + (−0.832 + 0.554i)13-s − 0.727·17-s − 1.25·23-s − 0.800·25-s − 1.11i·29-s − 0.507i·35-s + 0.493·37-s − 1.56i·41-s − 1.37i·43-s + 1.02i·47-s − 0.285·49-s + 0.824i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.196 + 0.980i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.196 + 0.980i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.196 + 0.980i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (1585, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.196 + 0.980i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5484268275\)
\(L(\frac12)\) \(\approx\) \(0.5484268275\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + (3 - 2i)T \)
good5 \( 1 + T + 5T^{2} \)
7 \( 1 - 3iT - 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
17 \( 1 + 3T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 6T + 23T^{2} \)
29 \( 1 + 6iT - 29T^{2} \)
31 \( 1 - 31T^{2} \)
37 \( 1 - 3T + 37T^{2} \)
41 \( 1 + 10iT - 41T^{2} \)
43 \( 1 + 9iT - 43T^{2} \)
47 \( 1 - 7iT - 47T^{2} \)
53 \( 1 - 6iT - 53T^{2} \)
59 \( 1 - 10T + 59T^{2} \)
61 \( 1 + 10iT - 61T^{2} \)
67 \( 1 - 12T + 67T^{2} \)
71 \( 1 - 5iT - 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 16T + 83T^{2} \)
89 \( 1 - 4iT - 89T^{2} \)
97 \( 1 + 18iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.350174052216300662525422634468, −7.62046902975398087474564107542, −6.82162951728595368314451217572, −6.03935617624287427887833445924, −5.39696187218225109748207916278, −4.33348688716486543184726182852, −3.82971133827768777415195765379, −2.48037220080733794914316177378, −1.97353877672884316303680034318, −0.17471963942233941914089943808, 1.05229788046133669700911800195, 2.27692366594132568685905235280, 3.42878837016600000907123002105, 4.12096496599099372486847831525, 4.74963001396955454767547963126, 5.77697655521623084653260108503, 6.69206385819191479688383533557, 7.22895213128669574766760036898, 7.971741426722753366922585104685, 8.521627997179533620272873888961

Graph of the $Z$-function along the critical line