Properties

Label 2-3724-1.1-c1-0-54
Degree $2$
Conductor $3724$
Sign $-1$
Analytic cond. $29.7362$
Root an. cond. $5.45309$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.79·3-s − 3·5-s + 4.79·9-s − 3.79·11-s + 13-s − 8.37·15-s − 3.79·17-s − 19-s + 4.58·23-s + 4·25-s + 4.99·27-s + 3.79·29-s − 7.37·31-s − 10.5·33-s + 5·37-s + 2.79·39-s + 3.79·41-s + 2·43-s − 14.3·45-s − 10.5·47-s − 10.5·51-s − 8.37·53-s + 11.3·55-s − 2.79·57-s − 12.1·59-s + 61-s − 3·65-s + ⋯
L(s)  = 1  + 1.61·3-s − 1.34·5-s + 1.59·9-s − 1.14·11-s + 0.277·13-s − 2.16·15-s − 0.919·17-s − 0.229·19-s + 0.955·23-s + 0.800·25-s + 0.962·27-s + 0.704·29-s − 1.32·31-s − 1.84·33-s + 0.821·37-s + 0.446·39-s + 0.592·41-s + 0.304·43-s − 2.14·45-s − 1.54·47-s − 1.48·51-s − 1.15·53-s + 1.53·55-s − 0.369·57-s − 1.58·59-s + 0.128·61-s − 0.372·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3724\)    =    \(2^{2} \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(29.7362\)
Root analytic conductor: \(5.45309\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3724,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 2.79T + 3T^{2} \)
5 \( 1 + 3T + 5T^{2} \)
11 \( 1 + 3.79T + 11T^{2} \)
13 \( 1 - T + 13T^{2} \)
17 \( 1 + 3.79T + 17T^{2} \)
23 \( 1 - 4.58T + 23T^{2} \)
29 \( 1 - 3.79T + 29T^{2} \)
31 \( 1 + 7.37T + 31T^{2} \)
37 \( 1 - 5T + 37T^{2} \)
41 \( 1 - 3.79T + 41T^{2} \)
43 \( 1 - 2T + 43T^{2} \)
47 \( 1 + 10.5T + 47T^{2} \)
53 \( 1 + 8.37T + 53T^{2} \)
59 \( 1 + 12.1T + 59T^{2} \)
61 \( 1 - T + 61T^{2} \)
67 \( 1 + 9.37T + 67T^{2} \)
71 \( 1 + 12.1T + 71T^{2} \)
73 \( 1 + 16.3T + 73T^{2} \)
79 \( 1 + 10T + 79T^{2} \)
83 \( 1 + 14.3T + 83T^{2} \)
89 \( 1 + 7.58T + 89T^{2} \)
97 \( 1 - 7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.216183052598718612845774813413, −7.50852595263437380552743657165, −7.19552896582901802086673431869, −5.99061221415617308666379916393, −4.66033348580179924303350891340, −4.26575391360940547414690762090, −3.17371881328271977116196449846, −2.87538700715343684786860866502, −1.68144048209002389236322480362, 0, 1.68144048209002389236322480362, 2.87538700715343684786860866502, 3.17371881328271977116196449846, 4.26575391360940547414690762090, 4.66033348580179924303350891340, 5.99061221415617308666379916393, 7.19552896582901802086673431869, 7.50852595263437380552743657165, 8.216183052598718612845774813413

Graph of the $Z$-function along the critical line