L(s) = 1 | + 2.79·3-s − 3·5-s + 4.79·9-s − 3.79·11-s + 13-s − 8.37·15-s − 3.79·17-s − 19-s + 4.58·23-s + 4·25-s + 4.99·27-s + 3.79·29-s − 7.37·31-s − 10.5·33-s + 5·37-s + 2.79·39-s + 3.79·41-s + 2·43-s − 14.3·45-s − 10.5·47-s − 10.5·51-s − 8.37·53-s + 11.3·55-s − 2.79·57-s − 12.1·59-s + 61-s − 3·65-s + ⋯ |
L(s) = 1 | + 1.61·3-s − 1.34·5-s + 1.59·9-s − 1.14·11-s + 0.277·13-s − 2.16·15-s − 0.919·17-s − 0.229·19-s + 0.955·23-s + 0.800·25-s + 0.962·27-s + 0.704·29-s − 1.32·31-s − 1.84·33-s + 0.821·37-s + 0.446·39-s + 0.592·41-s + 0.304·43-s − 2.14·45-s − 1.54·47-s − 1.48·51-s − 1.15·53-s + 1.53·55-s − 0.369·57-s − 1.58·59-s + 0.128·61-s − 0.372·65-s + ⋯ |
Λ(s)=(=(3724s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(3724s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1 |
| 19 | 1+T |
good | 3 | 1−2.79T+3T2 |
| 5 | 1+3T+5T2 |
| 11 | 1+3.79T+11T2 |
| 13 | 1−T+13T2 |
| 17 | 1+3.79T+17T2 |
| 23 | 1−4.58T+23T2 |
| 29 | 1−3.79T+29T2 |
| 31 | 1+7.37T+31T2 |
| 37 | 1−5T+37T2 |
| 41 | 1−3.79T+41T2 |
| 43 | 1−2T+43T2 |
| 47 | 1+10.5T+47T2 |
| 53 | 1+8.37T+53T2 |
| 59 | 1+12.1T+59T2 |
| 61 | 1−T+61T2 |
| 67 | 1+9.37T+67T2 |
| 71 | 1+12.1T+71T2 |
| 73 | 1+16.3T+73T2 |
| 79 | 1+10T+79T2 |
| 83 | 1+14.3T+83T2 |
| 89 | 1+7.58T+89T2 |
| 97 | 1−7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.216183052598718612845774813413, −7.50852595263437380552743657165, −7.19552896582901802086673431869, −5.99061221415617308666379916393, −4.66033348580179924303350891340, −4.26575391360940547414690762090, −3.17371881328271977116196449846, −2.87538700715343684786860866502, −1.68144048209002389236322480362, 0,
1.68144048209002389236322480362, 2.87538700715343684786860866502, 3.17371881328271977116196449846, 4.26575391360940547414690762090, 4.66033348580179924303350891340, 5.99061221415617308666379916393, 7.19552896582901802086673431869, 7.50852595263437380552743657165, 8.216183052598718612845774813413