Properties

Label 2-3724-1.1-c1-0-54
Degree 22
Conductor 37243724
Sign 1-1
Analytic cond. 29.736229.7362
Root an. cond. 5.453095.45309
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 11

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.79·3-s − 3·5-s + 4.79·9-s − 3.79·11-s + 13-s − 8.37·15-s − 3.79·17-s − 19-s + 4.58·23-s + 4·25-s + 4.99·27-s + 3.79·29-s − 7.37·31-s − 10.5·33-s + 5·37-s + 2.79·39-s + 3.79·41-s + 2·43-s − 14.3·45-s − 10.5·47-s − 10.5·51-s − 8.37·53-s + 11.3·55-s − 2.79·57-s − 12.1·59-s + 61-s − 3·65-s + ⋯
L(s)  = 1  + 1.61·3-s − 1.34·5-s + 1.59·9-s − 1.14·11-s + 0.277·13-s − 2.16·15-s − 0.919·17-s − 0.229·19-s + 0.955·23-s + 0.800·25-s + 0.962·27-s + 0.704·29-s − 1.32·31-s − 1.84·33-s + 0.821·37-s + 0.446·39-s + 0.592·41-s + 0.304·43-s − 2.14·45-s − 1.54·47-s − 1.48·51-s − 1.15·53-s + 1.53·55-s − 0.369·57-s − 1.58·59-s + 0.128·61-s − 0.372·65-s + ⋯

Functional equation

Λ(s)=(3724s/2ΓC(s)L(s)=(Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}
Λ(s)=(3724s/2ΓC(s+1/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 3724 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 37243724    =    2272192^{2} \cdot 7^{2} \cdot 19
Sign: 1-1
Analytic conductor: 29.736229.7362
Root analytic conductor: 5.453095.45309
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 11
Selberg data: (2, 3724, ( :1/2), 1)(2,\ 3724,\ (\ :1/2),\ -1)

Particular Values

L(1)L(1) == 00
L(12)L(\frac12) == 00
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
7 1 1
19 1+T 1 + T
good3 12.79T+3T2 1 - 2.79T + 3T^{2}
5 1+3T+5T2 1 + 3T + 5T^{2}
11 1+3.79T+11T2 1 + 3.79T + 11T^{2}
13 1T+13T2 1 - T + 13T^{2}
17 1+3.79T+17T2 1 + 3.79T + 17T^{2}
23 14.58T+23T2 1 - 4.58T + 23T^{2}
29 13.79T+29T2 1 - 3.79T + 29T^{2}
31 1+7.37T+31T2 1 + 7.37T + 31T^{2}
37 15T+37T2 1 - 5T + 37T^{2}
41 13.79T+41T2 1 - 3.79T + 41T^{2}
43 12T+43T2 1 - 2T + 43T^{2}
47 1+10.5T+47T2 1 + 10.5T + 47T^{2}
53 1+8.37T+53T2 1 + 8.37T + 53T^{2}
59 1+12.1T+59T2 1 + 12.1T + 59T^{2}
61 1T+61T2 1 - T + 61T^{2}
67 1+9.37T+67T2 1 + 9.37T + 67T^{2}
71 1+12.1T+71T2 1 + 12.1T + 71T^{2}
73 1+16.3T+73T2 1 + 16.3T + 73T^{2}
79 1+10T+79T2 1 + 10T + 79T^{2}
83 1+14.3T+83T2 1 + 14.3T + 83T^{2}
89 1+7.58T+89T2 1 + 7.58T + 89T^{2}
97 17T+97T2 1 - 7T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.216183052598718612845774813413, −7.50852595263437380552743657165, −7.19552896582901802086673431869, −5.99061221415617308666379916393, −4.66033348580179924303350891340, −4.26575391360940547414690762090, −3.17371881328271977116196449846, −2.87538700715343684786860866502, −1.68144048209002389236322480362, 0, 1.68144048209002389236322480362, 2.87538700715343684786860866502, 3.17371881328271977116196449846, 4.26575391360940547414690762090, 4.66033348580179924303350891340, 5.99061221415617308666379916393, 7.19552896582901802086673431869, 7.50852595263437380552743657165, 8.216183052598718612845774813413

Graph of the ZZ-function along the critical line