L(s) = 1 | + 2-s + 4-s + 8-s + 9-s + 16-s + 18-s − 19-s − 23-s + 2·31-s + 32-s + 36-s + 37-s − 38-s − 41-s − 43-s − 46-s + 49-s − 53-s − 59-s + 2·62-s + 64-s + 72-s − 73-s + 74-s − 76-s − 79-s + 81-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 8-s + 9-s + 16-s + 18-s − 19-s − 23-s + 2·31-s + 32-s + 36-s + 37-s − 38-s − 41-s − 43-s − 46-s + 49-s − 53-s − 59-s + 2·62-s + 64-s + 72-s − 73-s + 74-s − 76-s − 79-s + 81-s + ⋯ |
Λ(s)=(=(3700s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3700s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3700
= 22⋅52⋅37
|
Sign: |
1
|
Analytic conductor: |
1.84654 |
Root analytic conductor: |
1.35887 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ3700(3551,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 3700, ( :0), 1)
|
Particular Values
L(21) |
≈ |
2.691327877 |
L(21) |
≈ |
2.691327877 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1 |
| 37 | 1−T |
good | 3 | (1−T)(1+T) |
| 7 | (1−T)(1+T) |
| 11 | (1−T)(1+T) |
| 13 | (1−T)(1+T) |
| 17 | (1−T)(1+T) |
| 19 | 1+T+T2 |
| 23 | 1+T+T2 |
| 29 | (1−T)(1+T) |
| 31 | (1−T)2 |
| 41 | 1+T+T2 |
| 43 | 1+T+T2 |
| 47 | (1−T)(1+T) |
| 53 | 1+T+T2 |
| 59 | 1+T+T2 |
| 61 | (1−T)(1+T) |
| 67 | (1−T)(1+T) |
| 71 | (1−T)(1+T) |
| 73 | 1+T+T2 |
| 79 | 1+T+T2 |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.438038724244311405770993811846, −7.88420378305325390075645747621, −6.99446324522723972533811963933, −6.42263979823660368993101691374, −5.75910621592356685767027135804, −4.59007463606938351211036862093, −4.36566813708242412163175731707, −3.33765426402307456970991998656, −2.36164885993655915262178801310, −1.42721421791403126229099306116,
1.42721421791403126229099306116, 2.36164885993655915262178801310, 3.33765426402307456970991998656, 4.36566813708242412163175731707, 4.59007463606938351211036862093, 5.75910621592356685767027135804, 6.42263979823660368993101691374, 6.99446324522723972533811963933, 7.88420378305325390075645747621, 8.438038724244311405770993811846