L(s) = 1 | + 2-s + 4-s + 8-s + 9-s + 16-s + 18-s − 19-s − 23-s + 2·31-s + 32-s + 36-s + 37-s − 38-s − 41-s − 43-s − 46-s + 49-s − 53-s − 59-s + 2·62-s + 64-s + 72-s − 73-s + 74-s − 76-s − 79-s + 81-s + ⋯ |
L(s) = 1 | + 2-s + 4-s + 8-s + 9-s + 16-s + 18-s − 19-s − 23-s + 2·31-s + 32-s + 36-s + 37-s − 38-s − 41-s − 43-s − 46-s + 49-s − 53-s − 59-s + 2·62-s + 64-s + 72-s − 73-s + 74-s − 76-s − 79-s + 81-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.691327877\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.691327877\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - T \) |
| 5 | \( 1 \) |
| 37 | \( 1 - T \) |
good | 3 | \( ( 1 - T )( 1 + T ) \) |
| 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + T + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( ( 1 - T )^{2} \) |
| 41 | \( 1 + T + T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + T + T^{2} \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.438038724244311405770993811846, −7.88420378305325390075645747621, −6.99446324522723972533811963933, −6.42263979823660368993101691374, −5.75910621592356685767027135804, −4.59007463606938351211036862093, −4.36566813708242412163175731707, −3.33765426402307456970991998656, −2.36164885993655915262178801310, −1.42721421791403126229099306116,
1.42721421791403126229099306116, 2.36164885993655915262178801310, 3.33765426402307456970991998656, 4.36566813708242412163175731707, 4.59007463606938351211036862093, 5.75910621592356685767027135804, 6.42263979823660368993101691374, 6.99446324522723972533811963933, 7.88420378305325390075645747621, 8.438038724244311405770993811846